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1. Introduction

There are two aspects in teaching capture–recapture techniques in epidemiology and the social

sciences that we would like to give more attention than they usually receive. The first aspect refers to

the types of data that can be used for capture–recapture techniques, and the second refers to the fact

that interest usually does not only go out to the population size estimate, but also to the composition

of the observed and unobserved parts of the population.

Two types of data for capture–recapture techniques

The first aspect is that, in teaching, we would like to emphasize that there are two types of

data where capture–recapture techniques can be fruitfully applied. Usually the focus is only on the

type of data obtained from linking individuals in multiple registrations (compare Bishop, Fienberg

and Holland, 1975; the International Working Group for Disease Monitoring and Forecasting, 1995;

Chao et al., 2001). Consider three registrations A, B and C, neither of which providing a complete

list of the population. Let the variables A,B and C have levels 0 = no and 1 = yes to denote whether

a population member is included in the corresponding registration or not. By counting the number

of individuals in each combination of A,B and C, a three-way contingency table A × B × C can be

constructed with a total of 8 cells. The sum of the counts in the 7 cells corresponding to individuals

who are observed in at least one of the registrations equals n, while the count in the cell (0,0,0) is

0 by design, as it refers to the number of individuals that is missed by all registrations. The most

important aim of capture–recapture techniques is to estimate the population size N , and this estimate

is found as the sum of n and the estimated count for cell (0,0,0).

A second type of data that can be used for estimating a population size and that is also often

available in epidemiology and the social sciences, is a single, but incomplete registration in which

individuals may appear multiple times. In this respect one can think of a police registration of

apprehensions for a specific traffic violation. Some traffic violators will appear multiple times in a

specific time span while others will not be apprehended at all. Similarly, for a population of drug

users one can think of a registration of contacts in a clinic. Some drug users will seek contact multiple

times but others will never seek contact. The idea is that the registration can produce a list of

individuals with the count (i.e. the number of times) that they appear in the registration. The

frequency distribution of the counts is zero-truncated (drug users with zero contacts do not appear on
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the list) and the statistical problem is to estimate the frequency of the zero count. For this purpose

the (truncated-at-zero) Poisson distribution is used to derive estimators, and these estimators can

take covariate information of the individuals into account, (see van der Heijden et al., 2003a, 2003b;

Böhning and van der Heijden, 2009; Cruyff and van der Heijden, 2009).

In discussions of population size estimation these single-registration techniques receive much less

attention than multiple-registration techniques, but in the social sciences and epidemiology it is often

difficult to find multiple lists that can be linked, while single registrations may be ready available.

Thus including single registration estimates into the capture–recapture toolbox increases the range of

possible applications of capture–recapture.

Composition of the population

Usually interest is not only in the size of a population, but also in its composition, or in other

words, in a breakdown of the population size using a set of covariates. For single–registration tech-

niques this can be easily accomplished as the key component of these techniques, a Poisson parameter,

can be modeled as a function of covariates. For multiple–registration techniques this is less obvious.

First, the contingency table built up of registrations can be stratified by covariates, and a separate

subpopulation size estimate can be derived for each of the (cross-classified) levels of the covariate(s).

However, in order to be able to do this for a covariate this covariate should be available in each of the

registrations and it practice this condition is often not satisfied.

Recently, however, methodology has been proposed that allows to include covariates into the

model that are not included in each of the registrations (Zwane and van der Heijden, 2007; Sutherland,

Schwarz and Rivest, 2007; van der Heijden, Zwane and Hessen, 2009). In this methodology considers

covariates not in one or more of the registrations as missing data, and these missing data are estimated

with missing data methodology such as the EM algorithm. We think that this methodology also

enlarges the range of possible applications of capture–recapture.

This manuscript has two sections, estimates from a single registration and estimates from mul-

tiple registrations. In each of these sections we will give special emphasis to models that allow for a

description the composition of the population.

2. Estimates from a single registration

Overview

Registers can be used to generate a list of individuals from some population of interest. If each

time that an observation of a population member occurs is registered but, for one reason or another,

some population members are not observed at all, the list will be incomplete and will show only part of

the population. In this section we consider the estimation of population size from one-source capture-

recapture data, i.e. a register in which individuals can potentially be found repeatedly and where the

question is how many individuals are missed by the register. As a typical example, consider a drug

user study where the register consists of drug users who repeatedly contact treatment institutions.

Drug users with 1, 2, 3, ... contacts occur, but drug users with zero contacts are not present, requiring

the size of this group to be estimated. The register may have a record for every contact a drug user

has with the institution. Summation of the individual contacts yields data in which each registered

drug user has a single record with the count of the contacts, and some covariates. Statistically, the

counts can be considered to come from a zero-truncated count distribution.

We discuss two estimators, namely a homogeneous Poisson estimator for the population size and

an estimator for the population size suggested by Zelterman (1988) that is known to be robust under

potential unobserved heterogeneity. We first discuss these estimators and then indicate how they can

be adjusted so that they take into account covariate information.

Consider a population of size N and a count variable Y taking values in the set of integers
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{0, 1, 2, 3, ...}. For example, in drug user studies Y might represent the number of contacts a drug

user has with the treatment institutions. Also denote with f0, f1, f2, ... the frequency with which a

0, 1, 2, ... occurs in this population. Consider now a registration where every contact with a treatment

institution is registered and assume that a list of drug users is derived from this registration. Since

a drug user will only be observed if there has been a positive number of contacts with the treatment

institution y = 0 will not be observed in the list. Hence the list reflects a count variable truncated at

zero that we denote by Y+. Accordingly, the list has observed frequencies f1, f2, ..., but the frequency

f0 of zeros in the population is unknown. The size of the list is not N but n, where N = n+ f0.

The distribution of the untruncated and truncated counts are connected via P (Y+ = j) = P (Y =

j)/{1− P (Y = 0)} for j = 1, 2, .... For example, if Y follows a Poisson distribution with parameter λ

so that

(1) P (Y = j) = Po(j | λ) = e−λλj/j!,

for j = 0, 1, 2, ..., then the associated distribution of Y+ is given as

(2) P (Y+ = j) = Po+(j | λ) =
e−λ

1− e−λ
λj/j!,

with j = 1, 2, 3, ....

Given that all units of the population have the same probability Pi(Y > 0) = P (Y > 0) =

1 − P (Y = 0) of being included in the list, the population size can be estimated by means of the

Horvitz–Thompson estimator

(3) N̂ =
n∑

i=1

1

Pi(Y > 0)
=

n

1− P (Y = 0)
=

n

1− g(λ)
,

where g(λ) = e−λ, or more generally, g(λ) is the probability of a zero count for a given count distri-

bution. For more details on this type of capture–recapture methodology see van der Heijden et al.

(2003a,b), Böhning and Schön (2005), and Roberts and Brewer (2006).

In equation (3) we used the Horvitz–Thompson approach to arrive at an estimate of the popu-

lation size. This approach requires that λ is known and if it is not, it needs to be estimated. Clearly,

λ can be estimated with maximum likelihood under the assumption of a homogeneous truncated

Poisson distribution. Instead of estimating λ under the assumption of a homogeneous Poisson dis-

tribution, Zelterman (1988) argued that the Poisson assumption might not be valid over the entire

range of possible values for Y but it might be valid for small ranges of Y such as from j to j + 1,

so that it would be meaningful to use only the frequencies fj and fj+1 in estimating λ. Since for

any j both the truncated as well as the untruncated Poisson distribution have the property that

Po(j + 1 | λ)/Po(j | λ) = λ/(j + 1) and Po+(j + 1 | λ)/Po+(j | λ) = λ/(j + 1), respectively (see

equations (1) and (2)), λ can be written as

(4) λ =
(j + 1)Po(j + 1 | λ)

Po(j | λ)
=

(j + 1)Po+(j + 1 | λ)
Po+(j | λ)

.

An estimator for λ is obtained by replacing Po+(j | λ) by the empirical frequency fj :

(5) λ̂j =
(j + 1)fj+1

fj
.

If j = 1 we find λ̂1 = 2f2/f1, and this estimator is often considered for two reasons: for one, λ̂1 is

using frequencies in the vicinity of f0 which is the target of prediction, and two, in many application

studies for estimating f0 the majority of counts fall into f1 and f2. Clearly, the estimator is unaffected
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by changes in the data for counts larger than 2 which contributes largely to its robustness. We will

call λ̂1 = 2f2/f1 the Zelterman estimator for λ and, when this estimate is used in (3), this leads to

the Zelterman estimator of the population size, N̂ . If the context is clear we will simply use the term

Zelterman estimator.

The Zelterman estimator is simple to understand and to use and this might be one of the reasons

why it is quite popular in applications such as drug user studies (Hay and Smit 2003; van Hest et

al., 2007). It is also thought of being less sensitive to model violations than the estimator that is

derived under the assumption of the homogeneous Poisson distribution, that uses the entire range of

frequencies fj . Indeed, the Zelterman estimator also works rather well with contaminated distributions

as given by mixtures or approximated by mixtures (compare Zelterman, 1988).

Composition of the population

In most applications with hidden populations, the assumption of a homogeneous truncated Pois-

son distribution is not realistic since it implies that every individual has the same Poisson parameter.

Often, the register also includes some information about the individuals’ characteristics. This informa-

tion can be used to allow for (observed) heterogeneity in the Poisson parameters. For the homogeneous

Poisson estimator we use truncated Poisson regression to adjust for covariate information for each in-

dividual separately (see van der Heijden et al., 2003a,b). The covariate information is incorporated

in the model by specifying the link function lnλi = x′iβx′iβx′iβ, where xixixi is a vector with covariate values in-

cluding a constant, and βββ is the corresponding parameter vector. See van der Heijden et al. (2003a,b)

for details.

Similarly, Böhning and van der Heijden (2008) showed how the Zelterman estimator can be

adjusted so that it takes covariate information into account, thus arriving at a Poisson parameter

estimate for every individual separately. Specifically, they demonstrated that the Zelterman estimator

can be viewed as a maximum likelihood estimator for a locally truncated Poisson likelihood which is

equivalent to a binomial likelihood.

Thus both in the truncated Poisson regression model as in the Zelterman regression model we

obtain an estimate λi for individual i separately. Using this estimate we can find for every individual

separately an estimated probability of being observed, and using the Horvitz-Thompson approach we

obtain for every individual separately the number of comparable individuals that is not observed. For

example, when an individual had estimated probability .25 of being observed, then for this individual

there are three comparable individuals that are not observed (where ’comparable’ is defined in terms

of the values on the covariates). This allows to describe the population in terms of the covariates.

Example

We illustrate this with an example of an analysis with the truncated Poisson regression model

taken from van der Heijden et al. (2003b). We discuss the estimation of the number of illegal

immigrants in the Netherlands from police records. These records contain information on the number

of times each illegal immigrant was apprehended by the police and they are incomplete since the illegal

immigrants who were never apprehended do not appear in them. For the estimation of the number

of illegal immigrants in the Netherlands, police records are available for 1995, for four cities in the

Netherlands: Amsterdam, Rotterdam, The Hague and Utrecht. The records are used to derive count

data on how often each illegal immigrant is apprehended by the police, and included the following

covariate: age, gender, country and reason for being apprehended. To give some insight in the data,

we present the apprehension frequencies for each of the levels of the covariates in Table 1. For more

details on these data we refer to van der Heijden et al. (2003b).

For the zero-truncated Poisson regression analysis on the full model using all available covariates

the population size estimate is 12,691, with a 95 percent confidence interval of 7,185-18,198. Table 2
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Table 1: Illegal immigrants not effectively expelled. Observed frequencies for the covariate categories)

Covariate category f1 f2 f3 f4 f5 f6 Total

>40 years 105 6 111

<40 years 1540 177 37 13 1 1 1769

female 366 24 6 1 1 398

male 1279 159 31 12 1 1482

Turkey 90 3 93

North Africa 838 146 28 9 1 1 1023

Rest Africa 229 11 3 243

Surinam 63 1 64

Asia 272 9 1 2 284

America, Australia 153 13 5 2 173

Being illegal 224 29 5 1 259

Other reason 1421 154 32 12 1 1 1621

Table 2: Parameter estimates of the truncated Poisson regression model

Regression parameters MLE SE P -value∗

Intercept -2.317 0.449

Gender (male = 1, female = 0) 0.397 0.163 0.015

Age (< 40 yrs = 1, > 40 yrs = 0) 0.975 0.408 0.017

Nationality (Turkey) -1.675 0.603 0.006

(North Africa) 0.190 0.194 0.328

(Rest of Africa) -0.911 0.301 0.003

(Surinam) -2.337 1.014 0.021

(Asia) -1.092 0.302 <0.001

(America and Australia) 0.000

Reason (being illegal = 1, other reason = 0) 0.011 0.162 0.946

Log-likelihood= −848.448

* P -value for Wald test

shows the maximum likelihood estimates of the regression parameters together with their correspond-

ing standard errors and P -values. The variables Gender, Age and Nationality (Turkey, Rest of Africa,

Surinam or Asia) contribute significantly to the average number of times an individual is apprehended

by the police. The results show that male individuals and individuals who are less than 40 years of

age are, on the average, more frequently apprehended by the police. Individuals from Turkey, rest

of Africa, Surinam and Asia are less frequently apprehended than those from America and Australia.

The variable Reason for being apprehended appears to have no impact on the average number of times

an individual is apprehended by the police.

For the purpose of model selection, we fitted several truncated Poisson regression models. The

results are shown in Table 3. The null model yields the lowest estimate of the total number of illegal

immigrants (N̂ = 7080). The corresponding 95% Horvitz-Thompson confidence interval is (6,363 -

7,797). The largest estimate of N , N̂ = 12, 691, is obtained by fitting the full model of Table 3. These

estimates illustrate a theoretical result that, in a sequence of nested models, the more covariates that

are added to the model the higher the point estimate of N is expected to become.

In order to compare the various models we also computed AIC-values and performed likelihood-
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Table 3: Estimates N̂ and HT 95% confidence intervals for N obtained from fitting different truncated

Poisson regression models. Model comparisons using the likelihood-ratio test and AIC-criterion are

also given. χ2
(1) is the Lagrange multiplier test testing for overdispersion

Model AIC G2 df P ∗ χ2
(1) N̂ C.I.

Null 1805.9 106.0 7080 6363-7797

G 1798.3 9.6 1 .002 99.7 7319 6504-8134

G+A 1789.0 11.2 1 <.001 93.7 7807 6637-8976

G+A+N 1712.9 86.1 5 <.001 55.0 12690 7186-18194

G+A+N+R 1714.9 .004 1 .949 55.0 12691 7185-18198

* P -value for likelihood-ratio test.

ratio tests for the models in (in Table 3. The likelihood-ratio test in Table 3 shows that the variable

Reason for being caught can be dropped from the full model (G2 = .004, df = 1, P = .949). From the

resulting model (G+A+N) the variable Nationality cannot be dropped (G2 = 86.1, df = 5, P < .001),

nor can the variables Gender and Age (not shown here). Since the AIC-criterion also favors this model

and our choice of N̂ should be based on the best fitting model, our best estimate seems to be that

of the model (G+A+N), N̂ = 12, 690. When models are misspecified (e.g. the null model and the

models in the 2nd and the 3rd row of Table 3) their results, including the value of N̂ , should not be

interpreted.

Table 4: Observed and estimated counts for illegal immigrants for model (G+A+N).

k observed estimated residuals

0 0 10,810.4

1 1,645 1,612.6 0.81

2 183 233.7 -3.32

3 37 30.1 1.25

4 13 3.2 5.42

5 1 0.3 1.31

6 1 0.0 6.57

A way of examining the goodness of fit of a model is to compare the observed and the estimated

frequencies by looking at the Pearson residuals, as presented in Table 4. The residuals for k = 2,

k = 4 and k = 6 seem rather large, indicating some lack of fit. The Lagrange multiplier test of Gurmu

(1991) (see Section 5) suggests that there still remains some unobserved heterogeneity that cannot

be ignored (χ2 = 55.0, df = 1). Therefore we must conclude that the population size estimate N̂ =

12,690 should be interpreted as an underestimate of the true population size.

It is also possible to make comparisons between observed and estimated number of individuals for

subgroups in the data. This illustrates that the composition of the population can be studied. Table

5 shows such comparisons based on the model fit of model (G+A+N). Note that for all subgroups the

Horvitz-Thompson estimate of the number of individuals is much larger than the number of individuals

observed in the data. This indicates that the probability that illegal individuals are not apprehended

is high for all subgroups in the population. Moreover, it is clear that male individuals, individuals

who are less than 40 years of age and individuals from North Africa have a larger probability to be

apprehended, a confirmation of what was observed in Table 2.
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Table 5: Comparisons between observed and estimated N for subgroups based on model (G+A+N)

Subgroup Observed Estimated Observed/Estimated

Males 1482 8880.10 0.167

Females 398 3811.40 0.104

Individuals with Age < 40 years 1769 10506.72 0.168

Individuals with Age > 40 years 111 2184.73 0.051

Individuals from Turkey 93 1740.03 0.053

Individuals from North Africa 1023 3055.23 0.335

Individuals from Rest of Africa 243 2058.00 0.118

Individuals from Surinam 64 2387.75 0.027

Individuals from Asia 284 2741.96 0.104

Individuals from America and Australia 173 708.47 0.244

Individuals caught for reason Being illegal 259 1631.68 0.159

Individuals caught for Other reason 1621 11059.77 0.147

3. Estimates from a multiple registrations that are linked

Overview

A well known technique for estimating the size of a human population is to find two or more

registrations of this population, to link the individuals in the registrations and estimate the number of

individuals that occur in neither of the registrations (Fienberg, 1972; Bishop, Fienberg and Holland,

1975; Cormack, 1989; IWGfDMaF, 1995). For example, with two registrations A and B, linkage gives

a count of individuals in A but not in B, a count of individuals in B but not in A, and a count of

individuals both in A and B. The counts form a contingency table denoted by A×B with the variable

labeled A being short for ‘inclusion in registration A’, taking the levels ‘yes’ and ‘no’, and likewise

for registration B. In this table the cell ‘no,no’ has a zero count by definition, and the statistical

problem is to estimate its value in the population. A population size estimate is obtained by adding

this estimated count of missed individuals to the counts of individuals found in at least one of the

registrations.

With two registrations the usual assumptions under which a population size estimate is obtained

are: inclusion in registration A is independent of inclusion in registration B; and in at least one of the

two registrations the inclusion probabilities are homogeneous (see Chao et al., 2001 and Zwane et al.,

2004). Interestingly it is often, but incorrectly, supposed that both inclusion probabilities have to be

homogeneous. Other assumptions are that the population is closed and that it is possible to link the

individuals in registrations A and B perfectly.

It is generally agreed that these assumptions are unlikely to hold in human populations, but

there are three approaches that may be adopted to make the impact of possible violations less se-

vere. One approach is to include covariates into the model, in particular covariates whose levels have

heterogeneous inclusion probabilities for both registrations (see Bishop, Fienberg and Holland, 1975;

Baker, 1990; compare Pollock, 2002), so that loglinear models can be specified for the higher-way con-

tingency table of registrations A and B and the covariates. The restrictive independence assumption

is replaced by a less restrictive assumption of independence of A and B conditional on the covariates;

and subpopulation size estimates are derived (one for every level of the covariates) that add up to a

population size estimate. Another approach is to include a third registration, and to analyze the three-

way contingency table with loglinear models that may include one or more two-factor interactions,

thus getting rid of the independence assumption. Here the (less stringent) assumption made is that

the three-factor interaction is absent. However, including a third registration is not always possible,
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as it is not available, or because there is no information that makes it possible to link the individuals

in the third registration to both the first and to the second registration. A third approach makes use

of a latent variable to take heterogeneity of inclusion probabilities into account (see Fienberg, Johnson

and Junker, 1999; Bartolucci and Forcina, 2004). Of course, these three approaches are not exclusive

and may be used concurrently in one model.

Composition of the population

Inclusion of covariates into the model allows to get insight into the composition of the population

in terms of these covariates, and this one of the aspects that we would like to emphasize in this paper.

When the approach is adopted to use covariates, the question is which covariates should be chosen.

In the traditional approach, only covariates that are available in both registrations can be chosen.

Recently, Zwane and van der Heijden (2007) showed that it is also possible to use covariates that are

only available in a subset of the registrations. For example, when a covariate is available in registration

A but not in B, the values of the covariate in B are estimated under a missing-at-random assumption

(Little and Rubin, 1987); and the subpopulation size estimates are then derived as a by-product.

A simple example illustrates the problem, see Panel 1 of Table 6. It concerns people with

Afghan, Iranian or Iraqi nationality being registered in the official registration GBA and in the police

registration HKS in 2007. The aim is to estimate the size of the population and the size of the

subpopulations in terms of marital status and police region of apprehension. Covariate X1 (Marital

status) is only observed in registration A (GBA) and covariate X2 (Police region) is only observed in

registration B (HKS). As a result X1 is missing for those observations not in A and X2 is missing for

those observations not in B. Zwane and van der Heijden (2007) show that the missing observations

can be estimated using the EM algorithm under a missing-at-random (MAR) assumption (Little and

Rubin, 1987, Schafer, 1997) for the missing data process. After EM, in a second step, the population

size estimates are obtained for each of the levels of X1 and X2. The number of observed cells is lower

than in the standard situation. For example, in Panel 1 of Table 6 this number is 8, whereas it would

have been 12 if both X1 and X2 were observed in both A and B. For this reason only a restricted

set of loglinear models can be fit to the observed data. Zwane and van der Heijden (2007) show that

the most complicated model is [AX2][BX1][X1X2], where we use the notation of loglinear models

proposed by Bishop et al. (1975). At first sight this model appears counter-intuitive as one might

expect an interaction between variables A and X1, and between B and X2. However, the parameter

for the interaction between A and X1 (and B and X2) cannot be identified as the levels of X1 do not

vary over individuals for which A = 2.

The loglinear model [AX2][BX1][X1X2] is the saturated model, since the number of parameters

is 8 (the general mean, four parameters for the main effects and three interaction parameters) add

up to the 8 observed values. Consequently the 8 observed values equal the corresponding 8 fitted

values. The fitted values under this model are presented in Panel 2 of Table 6. Note that the EM

algorithm spreads out the missing values over the levels of the corresponding covariate. For example,

the observed value 13, 898 is divided over the levels of X1 into fitted values 4, 510.8 and 9, 387.2; note

also that the fitted values ratio 4, 510.8/9, 387.2 is identical to the observed values ratio 259/539.

By comparison, when X1 and X2 are observed in both A and B, the saturated model is

[AX1X2][BX1X2]. This is a less restrictive model than the model [AX2][BX1][X1X2], and the differ-

ence is due to the MAR assumption.

Concluding remarks

The missing data methodology that we just discussed allows to breakdown the population size

in terms of covariates. In Panel 2 of Table 6 the population size is broken down over the variables A

(official registration), B (police registration), X1 (marital status) andX2 (police region). This four-way

array can be marginalized in different ways, depending on the research question. The model has three

interaction parameters, related to the margin A×X2, that may show that there is a relation between
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Table 6: Covariate X1 is only observed in registrations A and X2 is only observed in B

Panel 1: Observed counts

A = 1 A = 2

X1 = 1 X1 = 2 X1 missing

B = 1 X2 = 1 259 539 13, 898

X2 = 2 110 177 12, 356

B = 2 X2 missing 91 164 -

Panel 2: Fitted values under [AX2][BX1][X1X2]

A = 1 A = 2

X1 = 1 X1 = 2 X1 = 1 X1 = 2

B = 1 X2 = 1 259.0 539.0 4, 510.8 9, 387.2

X2 = 2 110.0 177.0 4, 735.8 7, 620.3

B = 2 X2 = 1 63.9 123.5 1, 112.4 2, 150.2

X2 = 2 27.1 40.5 1, 167.9 1, 745.4

being apprehended in a certain police region and being registered in the official registration GBA; the

margin B×X1, that may show that there is a relation between marital status and being apprehended

by the police; and the marginX1×X2 that may show that there is a relation between marital status and

police region. Of course, other margins can also be studied and these are not necessarily independent

because marginalizing a conditional independence relation may lead to marginal dependence.

The missing data methodology is extended to more registrations and covariates, in Zwane and

van der Heijden (2007). It makes clear that more covariates can be taken into account than considered

in the traditional approach, be it under MAR assumptions. It may provide a useful description of the

composition of the population, in addition to the estimate of the population size.
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