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1 Introduction

Following the setting outlined in Priebe et al. [2011] we aim to detect anomlies within attributed
graphs. In particular, let V = {1, . . . , n} be the fixed set of vertices and φ :

(V
2

)
→ {0, 1, . . . ,K} be an

edge-attribution function. The graph on V is defined to be G = (V, Eφ) where

(u, v) ∈ Eφ ⇐⇒ φ(u, v) > 0.

We say that the edge (u, v) has attribute c ∈ {1, . . . ,K} if φ(u, v) = c. One can view the categorical
edge attributes as some mode of the communication event between actors u and v (e.g., a topic label
derived from the content of the communication).

The specific anomaly we aim to detect is the “chatter” alternative – a small (unspecified) subset
of vertices with altered communication behavior in an otherwise homogeneous setting. Our inference
task is to determine whether or not a graph (V, Eφ) includes a subset of verticesM = {v1, v2, . . . , vm}
whose edge-connectivity within the subset exhibits a different behaviour than that found among the
remaining vertices in the graph.

To this end we consider the problem of detecting chatter anomalies in a graph using hypothesis
testing on a fusion of attributed graph invariants. In particular, the focus of this paper is analyzing
and comparing the inferential power of the linear attribute fusion of the attributed q-clique invariant

TWq (G) =
∑

c1,...,cK∈P ((q
2),K)

wc1,...,cK

∑
(u1,...,uq)∈(Vq)

h
(
u1, . . . , uq; c1, . . . , cK

)
,

where the sum is over the collection of partitions P (
(
q
2

)
,K) of

(
q
2

)
into K non-negative parts, W =

{wi}i∈P ((q
2),K) are the fusion weights, and the summand h

(
u1, . . . , uq; c1, . . . , cK

)
indicates the event

that the vertices u1, . . . , uq are elements of a q-clique with cr edges of color r. Specifically, we consider
the cases q = 2 which yields the size fusion TW2 and q = 3 which yields the triangle fusion TW3 .

Our random graph model is motivated by the time series model found in Lee and Priebe [forth-
coming]: for each vertex v ∈ V we assign a latent variable Xv = (Xv

1 , . . . , X
v
d ) drawn independently

of all other vertices from some d-dimensional distribution. The edge-attribution function will be a
random variable where the probability of an edge (u, v) having attribute c is defined to be a some
predetermined function of the inner product of the latent variables. We assume that the edge at-
tributes, conditioned on the latent variables, are independent. In this paper, we will assume that
Xv ∼ Dirichlet (λv0, . . . , λ

v
K) and

P {φ(u, v) = c} = Xu
cX

v
c
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for all (u, v) ∈
(V

2

)
and all c ∈ {1, . . . ,K}. This model choice is analogous to the first and second ap-

proximations found in Lee and Priebe [forthcoming]: if we write λv = (λv0, . . . , λ
v
K) = (1 + rxv0, . . . , 1 + rxvK)

for some fixed (xv0, . . . , x
v
K) in the unit simplex and non-negative real r, then r → ∞ yields the first

approximation model (i.e., the “independent edge model”). We mention that our approach herein
differs from the second approximation in Lee and Priebe [forthcoming]; their second approximation
yields a inner product model with truncated Gaussian latent variables.

Related work may be found in Bollobas et al. [2007] Section 16.4 and references therein. We also
direct the interested reader to Priebe et al. [2011] in which the authors study other linear attribute
fusion invariants; in particular, the authors consider

maxdW (G) = max
v

K∑
c=1

wc
∑

u∈N [v]

I{φ(u, v) = c}

and

scanW (G) = max
v

K∑
c=1

wc
∑

u,x∈N [v]

I{φ(u, x) = c},

where N [v] = {u | (u, v) ∈ E} ∪ {v} is the closed neighborhood of vertex v in the graph.
Finally, we add that we will restrict ourselves to simple undirected graphs. We will not consider

hyper-graphs (hyper-edges consisting of more than two vertices), multi-graphs (more than one edge
between any two vertices), self-loops (an edge from a vertex to itself), or weighted edges.

2 Notation

For each positive integer l we use the notation [l] = {1, . . . , l}.
For each v ∈ V we assign a latent position vector Xv = (Xv

0 , . . . , X
v
K) ∼ Dirichlet(λv) for some

fixed parameter vector λv ∈ RK+1
+ . We also assume that the latent positions are independent.

Our null hypothesis assumes a version of homogeneity among the vertices; specifically,

H0 : Xv = (Xv
0 , . . . , X

v
K) ∼ Dirichlet(λ) for all v ∈ V

for some Dirichlet parameter vector λ = (λ0, . . . , λK). Our alternative hypothesis incorporates the
anomaly feature described in the preceding section as follows. Assume m = m(n) < n satisfies the
following two conditions: limn→∞m(n) = ∞ and limn→∞

m(n)
n = 0. Our alternative hypothesis is

defined to be

H1 : Xv =

(Y v
0 , . . . , Y

v
K) iid∼ Dir(η) i ∈ [m],

(Xv
0 , . . . , X

v
K) iid∼ Dir(λ) i ∈ [n]− [m].

for some fixed Dirichlet parameter vector η = (η0, . . . , ηK) and the same λ = (λ0, . . . , λK) from the
null hypothesis. For convenience, we also define Λ =

∑
0≤c≤K λc and H =

∑
0≤c≤K ηc.

We define
εc =

∑
(u,v)∈(V2)

I {φ (u, v) = c}

to be the size (i.e., number of 2-cliques) of attribute c in the graph. Similarly, for the number of
triangles (i.e., 3-cliques) we write τc, τb,c, and τb,c,d to denote the number of 3-cliques with three
c-colored edges, two b-colored and one c-colored edge, and one edge of each of three edge-colors b, c, d,
respectively.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS014) p.4150



Before proceeding, we highlight a relevant property of the mixed moments of the Dirichlet distri-
bution (see Johnson and Kotz [1972]): if r1, . . . , rs are non-negative and (X1, . . . , Xs) ∼ Dirichlet(θ1, . . . , θs)
then

(1) E

[
s∏
i=1

Xri

]
=

Γ (
∑s

i=1 θi)
∏s
j=1 Γ (θj + rj)∏s

i=1 Γ (θi) Γ
(∑s

j=1 (θj + rj)
)

where Γ denotes Euler’s standard Gamma function. With this property one can compute the exact
moments of the Hajek projection of TW2 and TW3 under either hypothesis. We write ν(i)

(c) to denote the

i-th moment of Xc in the null latent vector and ν
(i,j)
(b,c) to denote the joint (i, j)-moment of (Xb, Xc).

Similarly, we’ll write µ(i)
(c) to denote the i-th moment of Yc in the anomalous latent vector and µ(i,j)

(b,c) to
denote the joint (i, j)-moment of (Yb, Yc).

3 Analysis

We will appeal to Hajek’s Projection method, detailed in Nowicki and Wierman [1988], in order to
demonstrate the asymptotic normality of the fusion invariants in this article. This approach is outlined
as follows: We define the projection of the fusion T to be the centered sum of independent random
variables

T ∗ =
∑
v∈V

E [T |Xv]− (n− 1)E[T ].

For both the size and triangle fusion we aim to show that

T − E [T ]√
V ar (T ∗)

=
T − T ∗√
V ar (T ∗)

+
T ∗ − E [T ]√
V ar (T ∗)

D−→ N(0, 1).

To this end, one appeals to Chebyshev’s Inequality to show that V ar (T − T ∗) = o(V ar (T ∗))
(see Nowicki and Wierman [1988] for the detailed argument). Specifically, if

P

{
|T − T ∗|√
V ar (T ∗)

≥ ε

}
≤ V ar (T − T ∗)

ε2V ar (T ∗)
→ 0

for any positive ε, then

T − T ∗√
V ar (T ∗)

+
T ∗ − E [T ]√
V ar (T ∗)

D−→ N(0, 1)

by applying the Central Limit Theorem to the normalized sum of independent random variables in
the second term of the left-hand side.

3.1 The Attributed Size Fusion

For each c ∈ K define

εc =
∑

(u,v)∈(V2)
I {φ (u, v) = c}

to be the number of edges of color c in the graph. The linear attribute fusion with parameter W =
(w1, . . . , wK) is defined to be

TW2 =
K∑
c=1

wcεc.
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3.1.1 The Attributed Size Fusion under H0

We present all relevant terms within the Hajek Projection of the attributed size fusion under the null
hypothesis.

The expectation of TW2 under the null is given by

E0

[
TW2

]
=
(
n

2

) K∑
c=1

wc

[
ν

(1)
(c)

]2
.

E0

[
TW2 |Xa

]
for any fixed a ∈ V is given by

E0

[
TW2 |Xa

]
= (n− 1)

K∑
c=1

wc

[
ν

(1)
(c)

]
X(a)
c +

(
n− 1

2

) K∑
c=1

wc

[
ν

(1)
(c)

]2
.

We can now evaluate T ∗ under the null:

T ∗ =
∑
a∈[n]

E
[
TW2 |Xa

]
− (n− 1)E[TW2 ]

= (n− 1)
∑
a∈[n]

∑
1≤c≤K

wc

[
ν

(1)
(c)

]
X(a)
c −

(
n

2

) K∑
c=1

wc

[
ν

(1)
(c)

]2
.

The variance of this sum of independent and identically distributed random variables is

V ar0 (T ∗) = Θ
(
n3
)
.

As V ar0
(
TW2 − T ∗

)
≤
(
n
2

)
(2+1)2E [I {φ (u, v) > 0}] = o(V ar0 (T ∗)) by the Cauchy-Schwarz Inequality

(see Nowicki and Wierman [1988] for full details), we have the desired convergence to the standard
normal distribution.

3.1.2 The Attributed Size Fusion under H1

For the alternative we write the edge attribution function as

P {φ (u, v) = c} =


Y u
c Y

v
c u, v ∈ [m],

Y u
c X

v
c u ∈ [m], v ∈ [n]− [m],

Xu
cX

v
c u, v ∈ [n]− [m].

We perform a similar but more involved analysis to deduce the limiting distribution of the
attribued size fusion of the graph under these conditions, yielding

V ar1 (T ∗) = Θ
(
n3
)

and
V ar1

(
TW2 − T ∗

)
= Θ

(
n2
)

= o(V ar1 (T ∗))

as desired.

3.1.3 Asymptotic Power Analysis of the Attributed Size Fusion

Returning to the context of hypothesis testing, assume we are interested in performing an α-level
hypothesis test to determine whether or not the graph includes an anomalous set of m vertices whose
underlying latent distribution differs from the the null component of the graph. We define βW2 =
limn→∞ P1

{
TW2 > cα

}
where cα = c(α, n) is the α-level critical value of the test.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS014) p.4152



Fix c ∈ [K]. The difference of the corresponding terms the hypotheses means can be written as

E1 [εc]− E0 [εc] = D
(c)
1 +D

(c)
2 =

(
m

1

)(
n−m

1

)
ν

(1)
(c)

(
µ

(1)
(c) − ν

(1)
(c)

)
+
(
m

2

)([
µ

(1)
(c)

]2
−
[
ν

(1)
(c)

]2)
(here D(c)

i corresponds to the edge-count that includes edges with exactly i anomalous vertices). The
reader can verify that V ar1(T ∗)

V ar0(T ∗) → 1. Moreover, given that the limiting distribution (under the null) is
normal, we write

cα = zα
√
V ar0 (T ∗) + E0

[
TW2

]
and thus

βW2 = P

{
Z > zα − lim

n→∞

(
E1

[
TW2

]
− E0

[
TW2

]√
V ar0 (T ∗)

)}
.

Recall that V ar0 (T ∗) = Θ(n3); thus, if∑
c

wcD
(c)
1 6= 0

(i.e. there is signal in the null-to-anomaly connectivity) then the limiting power βW2 > α when
m(n−m)√

n3
9 0 or, equivalently, when m = Ω(

√
n) (similarly, if m = ω(

√
n) then βW2 → 1). Furthermore,

if ∑
c

wcD
(c)
1 = 0

(i.e. there is no signal in the null-to-anomaly connectivity) the limiting power βW2 > α when∑
cwcD

(c)
2 6= 0 and m2

√
n3

9 0 (which is equivalent to m = Ω( 4
√
n3)). Moreover, if m = ω( 4

√
n3)

under these conditions then βW2 → 1.
It follows that the optimal choice of weights (w1, . . . , wK) is the one which maximizes the ex-

pression

lim
n→∞

(
E1

[
TW2

]
− E0

[
TW2

]√
V ar0 (T ∗)

)

in either of the two above-mentioned cases.

3.2 The Attributed Number of Triangles Fusion

We begin by writing

τ =
∑
c∈[K]

τc +
∑
b6=c

τb,c +
∑
d6=b,c

τb,c,d.

We denote the number-of-triangles fusion invariant to be

TW3 =
∑
c∈[K]

wcτc +
∑
b6=c

wb,cτb,c +
∑
d6=b,c

wb,c,dτb,c,d.

Similar to what was done in the previous section, we obtain

E0 [T ∗] =
(
n

3

)∑
c∈[K]

wc

[
ν

(2)
(c)

]3
+
∑
b6=c

wb,c3ν
(2)
(b)

[
ν

(1,1)
(b,c)

]2
+
∑
d6=b,c

wb,c,d3ν
(1,1)
(b,c) ν

(1,1)
(b,d) ν

(1,1)
(c,d)


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and

V ar0 (T ∗) = Θ

(
n

(
n− 1

2

)2
)

under the null and

E1 [T ∗] = Θ

(
3∑
i=0

(
m

i

)(
n−m
3− i

))
and

V ar1 (T ∗) = Θ

(
n

(
n− 1

2

)2
)

under the alternative. Again, V ar0
(
TW3 − T ∗

)
= o(V ar0 (T ∗)) and V ar1

(
TW3 − T ∗

)
= o(V ar1 (T ∗)).

As in the case with the attributed size fusion, we are interested in performing an α-level hy-
pothesis test.

The terms within the difference in means can be expressed as

E1 [T ∗]− E0 [T ∗] =
∑
c∈[K]

D(c) +
∑
b6=c

D(b,c) +
∑
d6=b,c

D(b,c,d)

= Θ

(
3∑
i=1

(
m

i

)(
n−m
3− i

)
δi (H,Λ)

)
where δi(H,Λ) is the mixed-moments difference when there are i anomalous vertices in a 3-clique.

The reader can verify that V ar1(T ∗)
V ar0(T ∗) → 1. Since V ar0 (T ∗) = Θ(n5), we have that the limiting

power βW3 > α when when m = Ω( 2i
√
n2i−1) and the corresponding mixed-moments expression δi(H,Λ)

is non-zero.

4 Conclusion

We have presented preliminary results for linear attribute fusion for clique sizes q = 2 and 3 in terms
of inferential power when detecting the prescribed anomaly within our model. In general, the most
powerful choice of q depends on m as a function of n and on the Dirichlet parameter vectors λ and η

through the mixed moments.
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