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1. Introduction

The challenge of accurate wind power forecasting has received considerable attention in recent
years as the prevalence of this variable energy source increases. As Giebel et al. (2003) describe,
different forecast horizons are required for different purposes. For example long-term forecasts, in the
region of 7-10 days, are used for maintenance scheduling. Conversely very short term forecasts, of
the order of seconds ahead, can be used to aid turbine control. Several different methods exist for
obtaining power forecasts. Some forecasting schemes model the power output directly, whilst others
forecast meteorological variables such as wind speed and use a wind farm’s power curve to convert
wind speed forecasts into power forecasts. See Giebel et al. (2003) or Genton and Hering (2007) for
an introduction to this field.

Our attention in this paper focuses on a question which arises from the second of these forecasting
approaches. Specifically we consider the issue of appropriate time intervals for wind speed forecasting.
Typically when forecasting wind speed, producers use either hourly or 10-minute average wind-speed
observations. It is natural to enquire whether these are appropriate measurements for use within a
time series analysis. It is this question which we consider in this paper.

Recall, from time series theory, that given a time series sampled at rate 6t, the highest frequency
that can be observed undistorted in the series spectrum is the Nyquist frequency 7 /dt, see Priestley
(1983) for example. Consequently if, for example, the sampling rate, dt, is halved, i.e. the series
is sampled twice as often, then one can observe undistorted frequencies in the series twice as high as
before. Given a fixed sampling rate, if the highest frequencies in the series are higher than the Nyquist
frequency then a phenomenon called aliasing occurs. Aliasing means that high frequency information
reappears in the spectrum (or equivalently its estimate) at lower frequencies as the sampling rate is
not sufficiently high to capture the higher frequencies. Hence, one cannot trust a spectral estimate of
a series that is subject to aliasing. As one would expect, the spectral distortion can be drastic if there
is an appreciable amount of spectral power in the series at frequencies higher than the Nyquist limit.

In practice aliasing can occur whenever a continuous-time process undergoes sampling. It can
also occur when a discrete-time process undergoes sub-sampling. Many time series texts, such as
Hannan (1960), Priestley (1983) and Chatfield (2003) describe the effect of aliasing but do not
give any practical advice about detecting it, let alone locating it or removing its effects. Since the
autocovariance and the spectrum of a series form a Fourier pair, series that are subject to aliasing
often have their autocovariance, and related quantities, distorted also. Consequently estimates of
time series model parameters and associated forecasts can also be distorted. In this paper we will use
recent methodology proposed by Eckley and Nason (2011) to explore whether aggregating data to the
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standard 10-minute average wind speed level is appropriate for a proposed onshore wind farm. The
approach proposed by Eckley and Nason (2011) is based on the locally stationary wavelet modelling
framework proposed by Nason et al. (2000).

The paper is organised as follows: in Section 2 we briefly review the locally stationary time
series modelling framework which underpins the test proposed by Eckley and Nason (2011). Section 3
describes key results presented by Eckley and Nason (2011) which permit the identification of aliasing
(or white noise corruption) within a time series and describes the circumstances under which it can
be applied. The paper concludes in Section 4 by describing the results of our investigation.

2. Locally stationary wavelet processes

It is well known that a second-order stationary process, {X;}icz, has spectral representation
given by

™
X = A(w)e™tde(w),
—T
where d¢(w) is an orthonormal increments process, see Priestley (1983). However it is arguable that
the majority of observed time series, such as wind speed, do not meet the requirements of second-
order stationarity. Given this inherent non-stationarity, our work adopts a framework which permits
the second-order structure to change over time. Such localisation is often achieved by replacing
the amplitude A(w) by a time-varying version, A;(w), (see e.g. Priestley (1983) or Dahlhaus (1997)).
However, as Eckley and Nason (2011) describe, the usual spectral quantities associated with estimating
key quantities in these kinds of Fourier models are rendered unidentifiable under aliasing. Hence, we
turn to a locally stationary wavelet model where not only are the key quantities identifiable but they
are also able to be well-estimated.
The locally stationary wavelet (LSW) process model with spectrum {S;(2)}32; introduced by
Nason et al. (2000) (NvSK00) can be briefly defined as follows:

1) X = wistjr®)r,

=1

fort=1,...,7 =27, for some J > 0. Here (i) {&x} are a collection of uncorrelated random variables
with mean zero and variance one; (ii) the {t;,} are a set of discrete nondecimated wavelets and (iii)
the {w;} are a collection of amplitudes that are ‘smooth’ in a particular way as a function of k£ and
wik ~ S;(k/T) (the evolutionary wavelet spectrum (EWS)). The speed of stochastic evolution of the
second-order properties of the series X; is controlled by the smoothness constraints on S;j(z). The
original NvSK00 work stipulated Lipschitz smoothness constraints, which was further extended by
Van Bellegem and von Sachs (2008) to add the possibility of jumps and other inhomogeneities in the
spectrum by extending S to functions of bounded variation, which we adopt here.

The EWS, S;(2), controls how much variance there is in the process at different scales or
frequency bands at time z. Thus, for example, Si(z) comprises the contribution to variance from the
highest frequency bands, and the frequency bands get lower as j increases. The original work of Nason
et al. (2000) and subsequent works such as Van Bellegem and von Sachs (2008) proposed methods for
estimating {5;(z)} using single realizations of X; via a bias-corrected smoothed wavelet periodogram
< X, V) k-t >2 where < -,- > denotes inner product. In the next section we summarise recent work
by Eckley and Nason (2011) which considers the effect of aliasing on the EWS.
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3. Identifying the presence of aliasing

Recent work by Eckley and Nason (2011) has investigated the behaviour of LSW processes
which are over-sampled. The initial focus of their work was to consider the effect of aliasing induced
by dyadic sampling on the raw EWS estimate. Below we briefly summarise their main findings.

To begin, let {Xi}ieq12,..1 be a LSW process and let Y; = Xory. In other words, Y; is a
(dyadically) subsampled version of X;. We will focus on the spectral behaviour of the observed Y;.
Following NvSK00 we define the non-decimated wavelet coefficients of the LSW process to be given
by dem =D, Yitbem(t) and the raw wavelet periodogram to be given by I, = dZm for{=1,...,00
and m € Z. The raw wavelet periodogram is a (biased) estimator of the EWS. In practice, for all but
a finite number of m the value of dy ,, will be zero due to the finite support of the wavelet.

Definition 1 ForY; = Xor; we define Dé% = E(d%m). This is the expected raw wavelet periodogram

of the subsampled series.

With the above notation in place we now describe a key result which considers the effect of aliasing
on the EWS:

Theorem 1 (Eckley and Nason, 2011) Let X; be a LSW process with EWS given by {S;(2)}32,
which obeys the same smoothness conditions as in Van Bellegem and von Sachs (2008) for Daubechies

compactly supported wavelets. The expectation of the raw periodogram of Xory for r =1,...,2771 is
given by
T oo
@) D) =3"8,@m/T)+ Y Ay eSi(2'm/T) + O(TY),
j=1 j=r+1
where £ = 1,2,... and m € Z and A;, is the bias-correction operator formed from the inner product

of the autocorrelation wavelets of ;. as defined in NvSK00. The result also holds true for Shannon
wavelets if the EWS, S;j(z), has continuous first derivative for each j > 0.

This result shows that when a realisation of a locally stationary wavelet process becomes aliased, power
from the aliased scales contaminate all other scales. For example in formula (2), above, the first term
>°15j(2"m/T), is independent of ¢. As such this term appears in the periodogram at each remaining
scale. Using this feature, it is possible to detect the presence of aliasing and/or white noise within
a time series. However, as Eckley and Nason (2011) discuss, to achieve this we must make certain
assumptions about the process, i.e. that it is bandlimited or satisfies a decay property. Typically such
information will not be known a priori. All is not lost though, for a remarkable result can be derived
for Shannon-based wavelet processes.

The Shannon case We recall from NvSKOO that the A matrix for Shannon wavelets is diagonal
with entries A;; = 2/ for j = 1,2,.... As Eckley and Nason (2011) describe, we can simplify (2) and
form the following system of linear equations:
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Um = Z Sj(zm)7
j=1

D&Z)n = > Si(zm) + A11Sr11(2m),
j=1

3) DY) = > Si(zm) + A228:42(2m),

j=1

r

D‘(]?n = ZS] Zm +A]JST+](Zm).
7j=1

The matrix representation of this system is

; 111 - 1Y (30 8(zm)
") 120 - 0 Sri1(2m)
. by .
(4) DO =| " =A4,8 104 -0 Srt () :
. AR :
Dym 1 o0 - 2/ Spv7(2m)

where A J is a (J 4 1)-dimensional square matrix. With the above notation in place, the following
result can be established:

Theorem 2 (Eckley and Nason, 2011) Let Xt be a Shannon LSW process, Y: = Xory and let b%)

be the wavelet periodogram of Y. Finally let Sy = A 1D(T). Then Sy, is an unbiased estimator of
S

In essence, the above means that we can obtain an unbiased estimate of the (previously aliased) EWS.
A number of other useful results follow from Theorem 2. In particular Eckley and Nason (2011)
highlight that the Shannon wavelet formula means that we do not need to assume that S;(z) = 0 for
all j > R, for some R (see Eckley and Nason (2011) for a discussion of this subtle, but important
point). Rather helpfully, the first entry in the ‘dealiased vector’, > " i=15j(2m), is the total amount of
aliased and/or white noise content at the location z,, = 2Tm/T. In addition the remaining entries,
{Sr41(zm), ..., Sr+7(2m)}, are the uncontaminated estimates of power at the observed scales.

Eckley and Nason (2011) also show that when no aliasing is present, the top row of the dealiased
vector, S'm, is zero and the remaining elements are an unbiased estimate of the true EWS. If the process
analysed is pure white noise, then the top row of the dealiased vector Sm is 02 at all time points m
with all other vector entries zero (Proposition 4 of Eckley and Nason (2011)). Consequently if a series
contains either white noise or aliased power, then using Theorem 2, the power migrates to the top
row of the ‘dealised vector’ Sp,. In the next section we consider the application of the above results
to wind speed data.

4. Application to wind speed time series

Recall from Section 1 that our attention in this paper focuses on whether the use of 10-minute
average wind-speed data is appropriate for modelling and forecasting future wind speeds. The data
which we consider arises from a proposed onshore wind farm in the Midwest of the United States
during March 2011. Data were collected at a rate of approximately 1Hz and subsequently aggregated
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to provide 10-minute average wind speeds, as used by several commercial packages to forecast wind
farm power output.

A plot of the 10-minute average wind speed data is displayed in Figure 1(a) below, together
with a plot of the first differences (to remove trend) in Figure 1(b). Visually, it would appear that the
differenced time series is non-stationary and a test of stationarity confirms this.
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Figure 1: (a) 10-minute averaged wind speed recorded at a proposed wind farm in the US Midwest
(ms~1); (b) First differences of the 10-minute averaged wind speed (ms~—!); (c) Regular Shannon
wavelet EWS estimate of the differenced data and (d) Dealiased Shannon wavelet EWS estimate of
the differenced series. Vertical lines at ¢t = 256, 560 are explained in the text.

To assess whether the observed wind speed data might be aliased, we apply the approach de-
scribed by Eckley and Nason (2011). Figure 1(c) displays the standard Shannon wavelet EWS estimate
of the differenced time series. Here the finest observed scale is labelled j = 2, as we are investigating
whether power exists at finer (unobserved) scales. There is clearly oscillatory power at scales j = 3,
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4 and 5 from time ¢t = 256. At this time, power increases somewhat within scales 2-5 whilst power at
the finest observed scale (j = 2) appears to tail off. Conversely, at around ¢ = 470, the power in scale
2 increases whilst the power in the coarser scales diminishes. This pattern of power shifting between
scales is reminiscent of a pulse changing in frequency over time. Something similar also appears to
occur around t = 560.

Within Figure 1(d) the level labelled ‘Alias’ represents the sum of all potential aliases. It is
particularly interesting to note that the visible content appears in two main bursts: the first occurs
immediately after ¢ = 256 whilst the second occurs around ¢t = 560. Hence this analysis appears to
confirm that, during the observed period power starts at lower frequencies, then increases through time
to the extent that it becomes aliased and detectable by our method before returning to observable
frequencies.

It is important to note that the results displayed in Figure 1(d) do not allow us to claim
categorically that we are detecting aliasing within this time series. Recall that the methodology used
cannot detect the difference between aliasing and white noise on its own. The power in the ‘alias’ level
could therefore be due to a white noise component. However, given the above, we could be highly
suspicious that aliasing is the underlying cause of the structure which appears on the ‘Alias’ level in
Figure 1(d).
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