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ABSTRACT

This paper is concerned with the least-squares polynomial filtering and fixed-point smoothing

problems of discrete-time stochastic signals from observations featuring multiple packet dropouts, a

realistic assumption in networked control systems and sensor networks where, generally, transmission

losses are unavoidable due to the unreliable network characteristics. The technique used to derive the

estimation algorithms consists of defining a suitable augmented observation model by assembling the

original observations with their Kronecker powers, thus reducing the polynomial estimation problem

from the original observations to the linear estimation problem from the augmented observations,

which is addressed by an innovation approach. The proposed estimation algorithms do not require

full knowledge of the state-space model generating the signal process, but only information about the

dropout probabilities and the moments of the processes involved. To measure the performance of the

estimators, recursive formulas for the filtering and fixed-point smoothing error covariance matrices are

also proposed.

Introduction

Over the past decade, networked systems have attracted much attention due to their wide ap-

plicability in engineering problems. Nevertheless, such systems involve a number of inherent problems

including (but not being limited to) communication time-delays and/or data packet dropouts, which

are unavoidable due to numerous causes such as network congestion, random failures in the transmis-

sion mechanism, accidental loss of some measurements, or data inaccessibility at certain times.

These time-delays and packet dropouts are often random in nature, so they are modelled by

introducing additional random variables in the observation model. Consequently, systems with random

packet dropouts and/or time-delays are always non-Gaussian and, as in other kinds of non-Gaussian

systems, the estimation problem has usually been focused on the search of suboptimal (basically linear)

estimators. Under the assumption that the state-space model of the signal to be estimated is known,

several modifications of conventional linear estimation algorithms have been proposed to incorporate

the effects of random delays on the measurement arrival, and also many results have been reported

on linear estimation for systems with packet dropouts (see e.g. [5] and references therein).

On another research line, there are many practical situations where the state-space model of the

signal is not available and another type of information, for example about the covariance functions of

the processes involved in the observation equation, must be processed for the estimation. In this con-

text, linear estimation algorithms from randomly delayed observations based on covariance information
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have been derived under different hypotheses on the delay process and, also, polynomial estimators,

which improve significantly the performance of linear ones, have been proposed in [1]. However, for

systems with random packet dropouts, the estimation problem using covariance information have not

been deeply studied yet.

This paper proposes a least-squares polynomial filtering and fixed-point smoothing algorithm

from observations featuring multiple packet dropouts, which does not require knowledge of the state-

space model but only information about the dropout probabilities and the moments of the processes

involved. The measurement packet dropouts are modelled by introducing a sequence of Bernoulli

random variables, whose values (one or zero) indicate if the current measure is available or lost during

transmission (in whose case, the latest measurement is processed). The methodology used to address

the polynomial estimation problem consists of augmenting the observation vectors by assembling the

original vectors with their Kronecker powers. Then, by using an innovation approach, the polynomial

estimators are derived as linear estimators from the augmented observations.

Observation model with multiple packet dropouts

Consider the problem of estimating an n-dimensional signal zk, whose measured output ỹk is

perturbed by an additive noise vk; that is,

ỹk = zk + vk, k ≥ 1.(1)

Assume that, at the initial time k = 1, the measured output ỹ1 is always available and, hence,

the measurement processed for the estimation is equal to the real measurement, y1 = ỹ1. However, at

any time k > 1, it is assumed that the measured output can be either transmitted successfully (with

probability pk) or dropped-out during transmission (with probability 1− pk), in whose case the latest

measurement received will be processed for the estimation.

This possibility of multiple random packet dropouts can be modelled by introducing a sequence

of Bernoulli random variables, {γk; k > 1}, with P [γk = 1] = pk, and considering the following model

for the measurements processed to estimate the signal:

yk = γkỹk + (1− γk)yk−1, k > 1; y1 = ỹ1.(2)

Our aim is to obtain the least-squares (LS) νth-order polynomial estimator of the signal zk based

on the observations y1, . . . , yL, with arbitrary integer order ν ≥ 1. Defining the random vectors

y
[2]
i = yi ⊗ yi, y

[j]
i = y

[j−1]
i ⊗ yi, j > 2

(⊗ denotes the Kronecker product (Magnus and Neudecker [3])), and assuming that E
[
y
[2ν]
i

]
< ∞,

this estimator is the orthogonal projection of zk on the space of n-dimensional linear transformations of

y1, . . . , yL and their Kronecker powers y
[2]
1 , . . . , y

[ν]
1 , . . . , y

[2]
L , . . . y

[ν]
L . More specifically, we are interested

in obtaining the LS νth-order polynomial filter (L = k) and fixed-point smoother (L > k) of the signal.

For this purpose, we assume the following hypotheses on the signal and the noise processes involved

in the observation model.

Model hypotheses

(H1) The n × 1 signal process {zk; k ≥ 1} has zero mean and, for i, j = 1, . . . , ν, the covariance

function of the processes {z[i]k ; k ≥ 1} and {z[j]k ; k ≥ 1} can be expressed as

Kij
k,s = E

[{
z
[i]
k − E[z

[i]
k ]
}{

z[j]s − E[z[j]s ]
}T ]

= Aijk B
ij
s
T
, s ≤ k

where Aij and Bij are ni ×Nij and nj ×Nij known matrix functions, respectively.
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(H2) The noise process {vk; k ≥ 1} is a zero-mean white sequence and its moments, up to the 2νth

one, are known and will be denoted by

Rijk = E

[{
v
[i]
k − E[v

[i]
k ]
}{

v
[j]
k − E[v

[j]
k ]
}T ]

, i, j = 1, . . . , ν.

(H3) The noise {γk; k > 1} is a sequence of independent Bernoulli random variables with known

probabilities, P [γk = 1] = pk.

(H4) The signal process, {zk; k ≥ 1}, and the noise processes, {vk; k ≥ 1} and {γk; k > 1}, are

mutually independent.

Polynomial estimation problem

Given the observation model (1)-(2), hypotheses (H1) and (H2) guarantee that E
[
y
[ν]T
i y

[ν]
i

]
<∞

and, consequently, the LS νth-order polynomial estimator, ẑνk/L, exists and can be obtained as the

orthogonal projection of zk on the space of n-dimensional linear transformations of y1, . . . , yL and their

Kronecker powers y
[2]
1 , . . . , y

[ν]
1 , . . . , y

[2]
L , . . . , y

[ν]
L . To obtain these estimators the following augmented

observation vectors are defined by assembling the original vectors and their Kronecker powers,

Yk =
(
yTk , y

[2]T
k , . . . , y

[ν]T
k

)T
, Ỹk =

(
ỹTk , ỹ

[2]T
k , . . . , ỹ

[ν]T
k

)T
.

Clearly, the space of n-dimensional linear transformations of Y1, . . . ,YL is equal to the space of

n-dimensional linear transformations of y1, y
[2]
1 , . . . , y

[ν]
1 , . . . , yL, y

[2]
L , . . . , y

[ν]
L . Then, the LS νth-order

polynomial estimator, ẑνk/L, is the LS linear estimator of zk based on Y1, . . . ,YL. To obtain this linear

estimator, firstly the relation between the augmented vectors Ỹk and Yk is studied, obtaining a new

observation model with multiple packet dropouts, and secondly the second-order statistical properties

of the processes involved in this new model are analyzed.

Augmented observation model

Using the binomial formula for the Kronecker powers (see Theorem 2.2.5 in [2]), the jth-order

Kronecker powers of the real observations ỹk, given in (1), are written as

ỹ
[j]
k =

j∑
l=1

Ljlk z
[l]
k + E[v

[j]
k ] + gjk, k ≥ 1, j = 1, . . . , ν

where

Ljlk = M j
j−l(n)

(
E[v

[j−l]
k ]⊗ In,l

)
, l < j; Ljjk = In,j

and

gjk =
j−1∑
l=1

M j
j−l(n)

({
v
[j−l]
k − E[v

[j−l]
k ]

}
⊗ In,l

)
z
[l]
k +

{
v
[j]
k − E[v

[j]
k ]
}

with

M j
0 (n) = M j

j (n) = In,j , M j
r (n)(M j−1

r (n)⊗ In,1) + (M j−1
r−1 (n)⊗Gj−r), r < j

Gl = (In,1 ⊗Gl−1)(G1 ⊗ In,l−1), G1 = Kn,n.

(In,l denotes the nl × nl identity matrix; Kn,n is the n2 × n2 commutation matrix, which satisfies

Kn,n(zk ⊗ vk) = vk ⊗ zk).
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Using again the Kronecker product properties and taking into account that γk = γ2k = · · · = γνk ,

the following expression is derived for the jth-order Kronecker power of the available observations yk,

given by (2),

y
[j]
k = γkỹ

[j]
k + (1− γk)y

[j]
k−1, k > 1; y

[j]
1 = ỹ

[j]
1 , j = 1, . . . , ν.

Then, denoting

Zk =


zk

z
[2]
k
...

z
[ν]
k

 , Lk =


L11
k 0 · · · 0

L21
k L22

k · · · 0
...

...
...

Lν1k Lν2k · · · Lννk

 , Vk =


0

E[v
[2]
k ]

...

E[v
[ν]
k ]

 , Gk =


vk
g2k
...

gνk


we obtain

Ỹk = LkZk + Vk + Gk, k ≥ 1

Yk = γkỸk + (1− γk)Yk−1, k > 1; Y1 = Ỹ1.
Since the signal, Zk, and the noise, Vk +Gk, in this new model are non-zero mean vectors, we consider

the centered vectors Ỹk = Ỹk−E
[
Ỹk
]

and Yk = Yk−E[Yk], which, taking into account that E [Gk] = 0,

satisfy the following augmented observation model :

Ỹk = LkZk + Gk, k ≥ 1,

Yk = γkỸk + (1− γk)Yk−1 + (γk − pk)Ck, k > 1; Y1 = Ỹ1,

with Zk = Zk − E[Zk] and Ck = E
[
Ỹk
]
− E [Yk−1], where E

[
Ỹk
]

is calculated from

E
[
Ỹk
]

= Lk


0

vec
(
A11
k B

11
k
T
)

...

vec
(
A1 ν−1
k B1 ν−1

k
T
)

+


0

vec
(
R11
k

)
...

vec
(
R1 ν−1
k

)


and E [Yk] is recursively obtained from

E [Yk] = (1− pk)E [Yk−1] + pkE[Ỹk], k > 1; E [Y1] = E[Ỹ1].

Note that the LS linear estimator of zk based on Y1, . . . ,YL is equal to the LS linear estimator

of zk based on Y1, . . . , YL. To obtain this estimator, the second-order statistical properties of the

augmented signal {Zk; k ≥ 1} and augmented noise {Gk; k ≥ 1} are necessary.

Statistical properties of the augmented processes

From the model hypotheses (H1)-(H4), the following statistical properties are derived (see

Nakamori et al. [4]):

(P1) The augmented signal process {Zk; k ≥ 1} has zero mean and its autocovariance function can

be expressed in a semi-degenerate kernel form; namely

KZ
k,s = E[ZkZ

T
s ] = AkBTs , s ≤ k,

where

Ak =


A11
k · · · A1ν

k 0 · · · 0 · · · 0 · · · 0

0 · · · 0 A21
k · · · A2ν

k · · · 0 · · · 0
...

...
...

...
...

...

0 · · · 0 0 · · · 0 · · · Aν1k · · · Aννk


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Bk =


B11
k · · · 0 B21

k · · · 0 · · · Bν1
k · · · 0

0 · · · 0 0 · · · 0 · · · 0 · · · 0
...

...
...

...
...

...

0 · · · B1ν
k 0 · · · B2ν

k · · · 0 · · · Bνν
k


(P2) The noise {Gk; k ≥ 1} is a sequence of zero-mean mutually uncorrelated random vectors with

covariance matrices RGk = E[GkGTk ], whose (r, s)-block is given by

RGk (r, s) = E
[
grkg

s
k
T
]

=
r−1∑
l=1

s−1∑
i=0

M r
r−l(n)P r,sl,i (vk)(M

s
s−i(n))T +

s−1∑
i=1

P r,s0,i (vk)(M
s
s−i(n))T + P r,s0,0(vk)

with

P r,sl,i (vk) = vec−1
{(
In,s−i ⊗Kni,nr−l ⊗ In,l

) (
vec(Rr−l s−ik )⊗ In,l+i

)
E[z

[l+i]
k ]

}
.

(P3) The noise process {Gk; k ≥ 1} is uncorrelated with the signal process {Zk; k ≥ 1}, and both

processes are independent of {γk; k > 1}.

Polynomial filtering and fixed-point smoothing algorithm

Using an innovation approach and the properties of the augmented processes (P1)-(P3) estab-

lished above, we derive the following recursive algorithm, which provides the polynomial filtering and

fixed-point smoothing estimators:

The polynomial fixed-point smoothers, zνk/L, are recursively obtained by

ẑνk/L = ẑνk/L−1 + Sk,LΠ−1L µL, L > k

whose initial condition is given by the polynomial filter

ẑνk/k = A(1)
k Ok, k ≥ 1,

where A(1)
k is the submatrix constituted by the first n rows of Ak.

The innovation, µk, satisfies

µk = Yk − pkLkAkOk−1 − (1− pk)Yk−1, k ≥ 2; µ1 = Y1.

The vectors Ok are recursively calculated from

Ok = Ok−1 + JkΠ
−1
k νk, k ≥ 1; O0 = 0.

The matrix function Jk satisfies

Jk = pk
[
BTk − rk−1ATk

]
LTk , k ≥ 2; J1 = BT1 LT1 ,

where rk are recursively obtained from

rk = rk−1 + JkΠ
−1
k JTk , k ≥ 1; r0 = 0.

The covariance matrix of the innovation, Πk, verifies

Πk = ΣY
k − p2kLkAkrk−1Ak

TLTk − (1− pk)2ΣY
k−1

−pk(1− pk)
[
LkAkFk−1 + F Tk−1Ak

TLTk
]
, k ≥ 2;

Π1 = ΣY
1
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where ΣY
k and Fk are recursively calculated from

ΣY
k = pk(LkAkBTk LTk +RGk ) + (1− pk)ΣY

k−1 + pk(1− pk)CkCTk , k ≥ 2;

ΣY
1 = L1A1BT1 LT1 +RG1

and

Fk = Jk + pkrk−1ATkLTk + (1− pk)Fk−1, k ≥ 2; F1 = J1.

Finally, the matrices Sk,L are calculated from

Sk,L = pL[B(1)k −Hk,L−1]ATLLTL, l > k; Sk,k = A(1)
k Jk,

where B(1)k is the submatrix constituted by the first n rows of Bk, and Hk,L satisfy

Hk,L = Hk,L−1 + Sk,LΠ−1L JTL , L > k; Hk,k = A(1)
k rk, k ≥ 1.

Estimation accuracy. The performance of the LS estimators ẑνk/L, L ≥ k is measured by the covariance

matrices of the estimation errors, Pk/L = E

[(
zk − ẑνk/L

) (
zk − ẑνk/L

)T ]
, L ≥ k. These matrices are

obtained by

Pk/L = Pk/L−1 − Sk,LΠ−1L STk,L, L > k

with initial condition

Pk/k = A(1)
k

[
B(1)k

T
− rkA

(1)
k

T
]
.
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