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With the development and operation of various large sky survey projects, how to improve and
optimize the efficiency and scientific output of telescopes is a hot issue. Thus the careful preparation
of survey programs and input catalogs are of great value. The development of robust data mining
techniques for ground-based instruments (such as Chinese LAMOST telescope) is a key element in
preselecting quasar candidates from other photometric surveys. Taking quantity and complexity of
astronomical data into account, a large number of mining approaches are applied and compared to
create the quasar targeting catalog. Each method has its merits and demerits.

INTRODUCTION

Quasars are among the most luminous, powerful, and energetic objects known in the Universe
and show a very high redshift. High redshift quasars are taken as the powerful probe of structure
formation in the very early Universe and important for understanding the formation and evolution
of galaxies and supermassive black holes (SMBHs) in the early Universe. The most distant quasars
place constraints on the reionization epoch (Fan et al. 2006). Quasars are also tracers of structure at
large scales and small scales (Kirkpatrick et al. 2011 and references therein). The number of quasars
has continually increased due to large sky surveys (e.g. 2DF, SDSS). The large number of quasars
are helpful to the study of the luminosity function of quasars (Boyle et al. 2000), as well as that of
baryon acoustic oscillations in the distribution of Lyα absorption (Ross et al. 2011).

Quasars can be detected over the entire observable electromagnetic spectrum including radio, in-
frared, optical, ultraviolet, X-ray and even gamma rays. In addition, they have variation in luminosity
on a variety of time scales. Only from morphology, quasars looked like single points of light (i.e., point
sources), indistinguishable from stars, except for their peculiar spectra. Based on these characteris-
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tics of quasars, various methods for preselecting quasar candidates have been applied, including their
nonstellar colors in ugriz broadband photometry (Richards et al. 2002), KX method (Warren et al.
2000), support vector machines and learning vector quantization (Zhang & Zhao 2003), Kernel Density
Estimation (Richards et al. 2004, 2009), UV-excess (Smith et al. 2005), Support Vector Machines and
KDTree (Gao et al. 2008), color space cutoff (Wu & Jia 2010), Artificial Neural Networks (Yeche et
al. 2010), Probabilistic Principal Surfaces and Negative Entropy Clustering (D’Abrusco et al. 2009),
Difference Boosting Neural Network (Abraham et al. 2010), likelihood estimator (Kirkpatrick et al.
2011), combination of quite a few methods (Ross et al. 2011).

With the exponential growth of astronomical data, astronomy changes from data-driven science
to data-intensive science and further steps into astroinformatics era. Data mining and machine learning
in astronomy are hot issue (see the review of Ball & Brunner 2010). There have been many successful
applications of data mining in astronomy. In this paper, we experiment a number of classification
approaches in WEKA used for discriminating quasars from stars, based on large sky survey databases
SDSS and UKIDSS.

The Sample

The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the
history of astronomy (York et al. 2000). The SDSS used a dedicated 2.5-meter telescope at Apache
Point Observatory, New Mexico, equipped with two powerful special-purpose instruments. SDSS data
have been released to the scientific community and the general public in annual increments, with the
final public Data Release 7 from SDSS-II occurring in October 2008. Meanwhile, SDSS is continuing
with the Third Sloan Digital Sky Survey (SDSS-III), a program of four new surveys using SDSS
facilities. SDSS-III began observations in July 2008 and released its first public data as Data Release
8 to emphasize its continuity with previous SDSS releases. SDSS-III will continue operating and
releasing data through 2014. The photometric imaging total area in the SDSS DR7 covers 11663 deg2

mainly in the Northern hemisphere in five specifically designed bands ugriz, but the spectroscopic
total area just covers 9380 deg2. The catalog of DR7 derived from the images includes more than 350
million celestial objects, and spectra of 930,000 galaxies, 120,000 quasars, and 460,000 stars.

The UKIRT Infrared Deep Sky Survey (UKIDSS) is the near-infrared sky survey which began
in May 2005 (Lawrence et al. 2007). UKIDSS is being carried out using the UKIRT Wide Field
Camera (WFCAM), which is the largest IR astronomical instrument to date. UKIDSS will be the
true near-infrared counterpart to the Sloan survey, and will produce as well a panoramic clear atlas of
the Galactic plane. It will survey 7500 square degrees of the Northern sky, extending over both high
and low Galactic latitudes with five survey components covering various combinations of the filter set
ZY JHK and H2. The limiting magnitude of UKIDSS is three magnitudes deeper and twelve times
larger in effective volume than the 2MASS survey.

In this study, we use the public Data Release 7 and query the SDSS spectroscopic database
to obtain point sources of all spectral types. The point sources meeting zconf ≥ 0.95 and 16 <

psfMag i < 22 are picked out and these sources include 434280 stars and 112425 quasars. In order to
keep the sample balanced, 112425 stars are randomly selected from the whole star sample. Culling the
records with missing values, the final sample consist of 112289 stars and 112004 quasars. This sample
is regarded as SDSS sample. All magnitudes are dereddened according to Schlegel et al. (1998). The
adopted parameters are i’, u’-g’,g’-r’,r’-i’,i’-z’.

Another sample is the cross-match result of SDSS DR7 and UKIDSS DR3 by finding the nearest
counterparts within 3 arcsec radius. The detail selecting criterion is described in Section 2 of Wu and
Jia (2010) including the equations of conversion between the SDSS AB magnitudes and UKIDSS Vega
magnitudes. Getting rid of the records with missing values, the SDSS UKIDSS sample include 8996
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stars and 8496 quasars. As for this sample, Vega magnitudes are adopted. The input pattern is
i,u-g,g-r,r-i,i-z,z-Y,Y-J,J-H,H-K.

ALGORITHMS

Based on the above samples, we have tried a range of classification algorithms to seperate quasars
from stars. Classification belongs to supervised learning which forms a model based on training data
and uses this model to classify new data. We make use of the following algorithms:

• Naive Bayes

• Bayes Network

• Logistic Regression

• RBF network

• SMO

• LibSVM

• Voted Perceptron

• Bagging

• LogitBoost

• Decision Table

• ADTree

• Decision Stump

• NBTree

• Random forest

• IB1

These algorithms are all provided and integrated in Weka. The Waikato Environment for

Knowledge Analysis, or Weka for short, is a collection of machine learning algorithms for data

mining tasks (Hall et al. 2009). The algorithms can either be applied directly to a dataset or

called from your own Java code. Weka contains tools for data pre-processing, classification, re-

gression, clustering, association rules, and visualization. It is also well-suited for developing new

machine learning schemes. it is available as Java source code at http://www.cs.waikato.ac.nz/ml/weka/.

Weka is open source software issued under the GNU General Public License. About the prin-

ciples and application of these algorithms refer to the book named “Data Mining: Practical

Machine Learning Tools and Techniques” and written by Ian H. Witten, Eibe Frank and Mark

A. Hall.

Based on Bayes, Naive Bayes and Bayes Network are applied. A Naive Bayes classifier is a

simple probabilistic classifier based on applying Bayes’ theorem (from Bayesian statistics) with

strong (naive) independence assumptions that the presence (or absence) of a particular feature

of a class is unrelated to the presence (or absence) of any other feature. Bayes Network is a

probabilistic graphical model that represents a set of random variables and their conditional

dependencies via a directed acyclic graph (DAG).

About function, Logistic Regression, radial basis function (RBF) network, SMO, LibSVM

and Voted Perceptron are tried. Logistic Regression is used for prediction of the probability of

occurrence of an event by fitting data to a logit function logistic curve. A radial basis function

network is an artificial neural network that uses radial basis functions as activation functions.

It is a linear combination of radial basis functions. The Sequential Minimal Optimization

(SMO) algorithm was developed as a faster, more scalable Support Vector Machine (SVM).

These improvements are related to increasing the speed of training and as such classification

is performed as with standard SVM. SVM constructs a hyperplane or set of hyperplanes in
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a high- or infinite-dimensional space, which can be used for classification, regression, or other

tasks. Intuitively, a good separation is achieved by the hyperplane that has the largest distance

to the nearest training data points of any class (so-called functional margin), since in general

the larger the margin the lower the generalization error of the classifier. The parameters of

the maximum-margin hyperplane are derived by solving the optimization. There exist sev-

eral specialized algorithms for quickly solving the QP problem that arises from SVMs, mostly

reliant on heuristics for breaking the problem down into smaller, more-manageable chunks.

A common method for solving the QP problem is Platt’s Sequential Minimal Optimization

(SMO) algorithm, which breaks the problem down into 2-dimensional sub-problems that may

be solved analytically, eliminating the need for a numerical optimization algorithm. LIBSVM is

short for a library for Support Vector Machines. It is an integrated software for support vector

classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution estimation

(one-class SVM). In the voted perceptron algorithm, more information is stored during training

and then this elaborate information is used to generate better predictions on the test data. The

information maintained during training is the list of all prediction vectors that were generated

after each and every mistake. For each such vector, the number of iterations is counted, and it

“survives until the next mistake is made; this count is regarded as the “weight of the prediction

vector. To calculate a prediction, the binary prediction of each one of the prediction vectors

is computed and all these predictions are combined by a weighted majority vote. The weights

used are the survival times described above. This makes intuitive sense as “good prediction

vectors tend to survive for a long time and thus have larger weight in the majority vote.

Considering meta algorithms, AdaBoost, Bagging and LogitBoost are adopted. Meta

algorithms such as boosting or bagging can improve accuracy by combining multiple weaker

classifiers into one strong classifier. Boosting is a process used to increase the performance

of weak learning algorithms. It can also be used on strong algorithms, but improvements are

less dramatic. Boosting works by combining the classifiers produced by the learning algorithm

over a number of distributions of the training data. AdaBoost can be used in conjunction

with many other learning algorithms to improve their performance. AdaBoost is adaptive in

the sense that subsequent classifiers built are tweaked in favor of those instances misclassified

by previous classifiers. Combining the decisions of different models means amalgamating the

various outputs into a single prediction. The simplest way to do this in the case of classification

is to take a vote (perhaps a weighted vote); in the case of numeric prediction it is to calculate

the average (perhaps a weighted average). Bagging adopts this approach and the models receive

equal weight. LogitBoost is a boosting algorithm. Specifically, if one considers AdaBoost as a

generalized additive model and then applies the cost functional of logistic regression, one can

derive the LogitBoost algorithm.

Given decision rule, Decision Table is selected. Like flowcharts and if-then-else and switch-

case statements, Decision Table is a precise yet compact way to model complicated logic,

associates conditions with actions to perform, but in many cases does so in a more elegant way.

In terms of tree method, ADTree, Decision Stump, NBTree and Random forest are imple-

mented. An alternating decision tree (ADTree) generalizes decision trees and has connections

to boosting. ADTree consists of decision nodes and prediction nodes. Decision nodes specify a

predicate condition. Prediction nodes contain a single number. ADTrees always have prediction

nodes as both root and leaves. An instance is classified by an ADTree by following all paths

for which all decision nodes are true and summing any prediction nodes that are traversed. A

decision stump is a one-level decision tree. That is, it is a decision tree with one internal node
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(the root) which is immediately connected to the terminal nodes. A decision stump makes a

prediction based on the value of just a single input feature. Sometimes they are also called

1-rules. NBTree is a hybrid of a decision tree classifier and a Naive Bayes classifier. Designed

to allow accuracy to scale up with increasingly large training datasets. The NBTree model is

best described as a decision tree of nodes and branches with Bayes classifiers on the leaf nodes.

Random forest is an ensemble classifier that consists of many decision trees and outputs the

class that is the mode of the class’s output by individual trees.

Talking about lazy learning, IB1 is used. Lazy learning methods defer processing of

training data until a query needs to be answered. This usually involves storing the training

data in memory, and finding relevant data in the database to answer a particular query. This

type of learning is also referred to as memory-based learning. IB1 uses a simple distance

measure to find the training instance closest to the given test instance, and predicts the same

class as this training instance. If multiple instances are the same (smallest) distance to the test

instance, the first one found is used.

With various classification algorithms, how to decide which one has better performance is

important. It needs measurement to judge the performance of classifier. We use metrics such

as Accuracy, True Negative Rate, True Positive Rate, Precision, Recall, and F-measure (FM)

to evaluate the performance of classification algorithms. These metrics have been widely used

for comparison of different classifiers. All these metrics are functions of the confusion matrix

as shown in Table 1. A false positive (FP) is when the outcome is incorrectly predicted as

yes (or positive) when it is actually no (negative). A false negative (FN) is when the outcome

is incorrectly predicted as negative when it is actually positive. The true positive rate is TP

divided by the total number of positives, which is TP + FN; the false positive rate is FP divided

by the total number of negatives, which is FP + TN. The overall success rate (Accuracy) is

the number of correct classifications divided by the total number of classifications. Recall is

the fraction of actual positive cases that were correct, and Precision is the fraction of the

predicted positive cases that were correctly identified. For any classifier, there is always a trade

off between Recall and Precision. The F-measure can be interpreted as a weighted average of

the precision and recall. These metrics are commonly used in the information retrieval area as

performance measures. We will adopt all these measurements to compare our methods with

different patterns. Ten-fold cross-validation is carried out to obtain all the performance metrics.

The rows of the matrix are actual classes, and the columns are the predicted classes. Based on

Table 1, the above-mentioned metrics are defined as follows:

Accuracy(Acc) =
TP + TN

TP + FP + TN + FN
(1)

True Positive Rate(Acc+) =
TP

TP + FN
= Recall(2)

True Nagative Rate(Acc−) =
TN

TN + FP
(3)

Precision =
TP

TP + FP
(4)

F −measure(FM) =
2× Precision×Recall

Precision + Recall
(5)

RESULTS AND DISCUSSION
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Table 1: Confusion matrix.

Predicted Positive Class Predicted Negative Class
Actual Positive class TP (True Positive) FN (False Negative)
Actual Negative class FP (False Positive) TN (True Negative)

In order to assure the reliability of comparison result, we apply the same sample and input
pattern for the above mentioned algorithms. As for SDSS sample, the detailed accuracy for each
method is shown in Table 2; accuracy and training time to build a model are indicated in Table 3.
From Tables 2-3, it is obvious that the algorithms except Naive Bayes, Logistic Regression and RBF
network have good performance; LibSVM, NBTree, Bagging, Random Forest and IB1 have better
performance. When considering the efficiency of a classifier, we also take the time to train and predict
into account. Usually the time to built a model is much longer than that of prediction. Nevertheless,
lazy learning algorithms are exception because these algorithms delay the computation until prediction.
So IB1 spends little time to learning while it takes more than half a day to prediction. Local weighted
learning and Kstar spend more than several days to build models for the SDSS sample. Due to slow
speed, we don’t list the performance of these two methods here. Of those algorithms with better
performance, the time to build models for Bagging and Random Forest is about a minute. In terms
of accuracy and speed, Bagging and Random Forest are better choice.

For simplicity, we only give accuracy and training time by different methods based on SDSS UKIDSS
sample in Table 4. Comparing Table 3 with Table 4, the classifier performance rank is nearly same.
LibSVM, NBTree, Bagging, Random Forest and IB1 still have better performance. Considering both
accuracy and speed, Bagging and Random Forest are better methods. For the same method, the
performance in Table 3 is better than that in Table 4. When the training sample become smaller,
the training speed accelerates sharply although the number of dimensionality is larger. For our case,
accuracy doesn’t improve when adding infrared information from UKIDSS. When data are from more
bands, the size of sample become much smaller and thus this leads to incomplete sample. Therefore
we can’t simply consider much better performance of a classifier with data from more bands. Circum-
stances alter cases. So far astronomy has stepped into huge sample era and become data-intensive
astronomy. Only when adding information from more bands and the variation in size of a sample is
much smaller or same, the performance of a classifier possibly improves.

Many factors influence the performance of a classifier, such as data characteristics, data pre-
processing, feature selection/extraction, model parameter optimization, model principle. The above
algorithms adopt the default settings in WEKA. Perhaps the training models haven’t arrive at the
optimal. Model parameter modulation contributes to good performance (Gao et al. 2008). Although
the rank of classifier performance is the same for these two samples, the performance rank based on
different samples is usually different compared to the work of Zhao & Zhang 2008. During data pre-
processing, we only remove the records with missing values. Considering feature selection/extraction,
some methods will improve their performances, different methods along with appropriate feature selec-
tion/extraction methods may obtain good results (Zheng & Zhang 2008). Moverover different feature
combination also affects the accuracy (D’Abrusco et al. 2009). With the volume of astronomical data
becoming larger and larger, how to high-efficiently store, move, handle, mine and analysis so huge
data is hot issue. For those algorithms with high accuracy and slow speed, parallel technology and
GPU technology are good answers. For example, CUDA-based k-nearest neighbors and CUDA-based
SVM are applied in classification of celestial objects (Pei et al. 2010; Peng et al. 2010). Meanwhile
the model principle of each algorithm is the leading role of its performance. The advantage and

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS049) p.5121



Table 2: Detailed Accuracy by Different Methods Based on SDSS Sample.

Method Class TP Rate FP Rate Precision Recall F-Measure
Naive Bayes stars 0.726 0.091 0.889 0.726 0.799

quasars 0.909 0.274 0.768 0.909 0.832
Bayes Network stars 0.929 0.07 0.93 0.929 0.929

quasars 0.93 0.071 0.929 0.93 0.92
Logistic Regression stars 0.855 0.081 0.914 0.855 0.884

quasars 0.919 0.145 0.864 0.919 0.891
RBF network stars 0.861 0.094 0.902 0.861 0.881

quasars 0.906 0.139 0.866 0.906 0.886
SMO stars 0.917 0.077 0.923 0.917 0.92

quasars 0.923 0.083 0.918 0.923 0.921
LibSVM stars 0.976 0.033 0.967 0.976 0.972

quasars 0.967 0.024 0.976 0.967 0.971
Voted Perceptron stars 0.928 0.079 0.921 0.928 0.925

quasars 0.921 0.072 0.927 0.921 0.924
AdaBoostM1 stars 0.954 0.099 0.906 0.954 0.93

quasars 0.901 0.046 0.952 0.901 0.926
Bagging stars 0.981 0.02 0.98 0.981 0.981

quasars 0.98 0.019 0.981 0.98 0.981
LogitBoost stars 0.968 0.091 0.914 0.968 0.941

quasars 0.909 0.032 0.966 0.909 0.937
Decision Table stars 0.976 0.056 0.946 0.976 0.961

quasars 0.944 0.024 0.975 0.944 0.959
ADTree stars 0.908 0.034 0.964 0.908 0.935

quasars 0.966 0.092 0.913 0.966 0.939
Decision Stump stars 0.952 0.099 0.906 0.952 0.929

quasars 0.901 0.048 0.95 0.901 0.925
NBTree stars 0.978 0.022 0.978 0.978 0.978

quasars 0.978 0.022 0.978 0.978 0.978
Random forest stars 0.984 0.021 0.979 0.984 0.982

quasars 0.979 0.016 0.984 0.979 0.982
IB1 stars 0.978 0.024 0.976 0.978 0.977

quasars 0.976 0.022 0.978 0.976 0.977

disadvantage of algorithms in common use are summarized in Table 2 of Ball & Brunner 2009.

CONCLUSION

Many classification algorithms in WEKA have been tried to separate quasars from stars using
data from SDSS and UKIDSS databases. Just for our case, LibSVM, NBTree, Bagging, Random
Forest and IB1 have obtained better performance. These approaches can be trained to build models
to preselect quasar candidates from large sky survey databases. In order to improve the reliability of
candidates, we may implement a number of high-efficient classification algorithms to preselect quasar
candidates separately and then take the cross-result from the results of different methods. WEKA
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Table 3: Accuracy and Training Time by Different Methods Based on SDSS Sample.

Method Accuracy Training Time
Naive Bayes 81.7025% 0.87s

Bayes Network 92.9302% 3.76s
Logistic Regression 88.7379% 6.95s

RBF network 88.3353% 20.99s
SMO 92.0412% 13.39s

LibSVM 97.1403% 1293.96s
Voted Perceptron 92.4206% 9.02s

AdaBoostM1 92.7679% 13.24s
Bagging 98.0766% 54.98s

LogitBoost 93.8687% 23.23s
Decision Table 95.9945% 25.47s

ADTree 93.7078% 34.95s
Decision Stump 92.6868% 1.24s

NBTree 97.8002% 146.98s
Random forest 98.1832% 63.6s

IB1 97.6963% 0.07s

Table 4: Accuracy and Training Time by Different Methods Based on SDSS UKIDSS Sample.

Method Accuracy Training Time
Naive Bayes 69.4375% 0.04s

Bayes Network 88.1489% 0.09s
Logistic Regression 82.8665% 0.5s

RBF network 75.5545% 1.56s
SMO 83.2724% 0.45s

LibSVM 94.9863% 14.63s
Voted Perceptron 81.2314% 2.68s

AdaBoostM1 89.3551% 0.45s
Bagging 96.6899% 1.61s

LogitBoost 90.6186% 0.82s
Decision Table 93.9344% 1.71s

ADTree 91.0302% 1.53s
Decision Stump 87.6058% 0.04s

NBTree 96.0439% 9.01s
Random forest 97.2216% 1.66s

IB1 96.5241% 0.01s

provides us a good testbed of various algorithms for classification, clustering, data preprocessing,
feature selection and an overview of performance for various methods. Before we don’t know which
method to choose, we may experiment the sample with WEKA. WEKA will give us a good guidance.
When the complexity of astronomical data increases, handling them is more difficult. Efficiently min-
ing useful knowledge from data ocean needs sincere communion and close collaboration of specialists
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from various fields, such as statisticians, database professionals, software and hardware experts, as-
tronomers, IT experts, computer scientist, data mining experts and so on. Moreover a new generation
of astronomers and technologists fit for data science are in urgent requirement. With the deployment
and development of ground- and space-based large facilities (e.g. SDSS, LSST, PanStars, LAMOST),
careful preparation of input catalogues and followup data processing become more important and
urgent. The tools and technologies to suit this situation must be developed as soon as possible. The
scientific achievements from other fields may be refereed and transformed into astronomy. To our hap-
piness, many experts from other fields have joined the astronomical field and lots of related projects
(e.g. Virtual Observatory) are in bloom, which push astronomy forward smoothly.
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