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1. Introduction

Let X1, X2, X3, . . . be a sequence of independent and identically distributed random variables

from a certain distribution. In many sequential estimation problems of parameters of distributions,

the expression of the so called “optimal” fixed sample size turns out to be

n0 =
qθ

h
(1)

where q and h are known positive numbers, but θ is the unknown and positive nuisance parameter.

Assume that θ > θL where θL(> 0) is known to the experimenter.

As an example, suppose that the mean µ and the variance σ2 of a distribution are both finite

and unknown. Having recorded X1, . . . , Xn, one may estimate µ by Xn = n−1 ∑n
i=1Xi under the loss

function Ln = (Xn−µ)2. Then, the risk is given by Rn = E(Ln) = σ2/n. For any preassigned w > 0,

we hope that Rn = σ2/n ≤ w, which is equivalent to

n ≥ σ2/w.

Hence, the optimal fixed sample size n0 becomes σ2/w, which corresponds to h = w, θ = σ2 and

q = 1 in (1). Unfortunately σ2 is unknown, so we can not use the optimal fixed sample size n0. Thus,

we use a sequential procedure. For this bounded risk problem, the asymptotic analyses when w → 0

correspond to those as h→ 0 in (1).

In sequential estimation of the normal mean, Mukhopadhyay and Duggan (1997) showed second-

order properties of the Stein-type two-stage procedure under the assumption that the unknown vari-

ance has a known and positive lower bound. The results were extended to a fairly general setup

by Mukhopadhyay and Duggan (1999). In this paper, we consider the general two-stage procedure

of Mukhopadhyay and Duggan (1999) and show its asymptotic higher-order properties. It will be

seen that our higher-order approximations are more accurate than the second-order approximations of

Mukhopadhyay and Duggan (1999). Our main theorems are described in Section 2. As an example,

our results are applied to the above bounded risk estimation of the normal mean in Section 3.

2. Asymptotic theory

We consider the following two-stage procedure which is the one of Mukhopadhyay and Duggan

(1999) with τ = 1. Taking account of (1), the initial sample size is defined by
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m ≡ m(h) = max

{
m0,

[
qθL
h

]∗
+ 1

}
(2)

where m0 is a preassigned positive integer and [x]∗ denotes the largest integer less than x. Based on

the pilot sample X1, . . . , Xm, we consider an estimator U(m) of θ satisfying P{U(m) > 0} = 1 and

E{U(m)} = θ. Further, suppose that

Ym =
pmU(m)

θ
is distributed as χ2

pm with pm = c1m+ c2

where pm is a positive integer with positive integer c1 and integer c2, and χ
2
pm stands for a chi-square

distribution with pm degrees of freedom. Then,

m→ ∞ and U(m)
P−→ θ as h→ 0

where “
P−→” stands for convergence in probability. Let q∗m be positive where

q∗m = q + c3m
−1 +O(m−2) as h→ 0

with some real number c3. It follows from (1) and (2) that

m

n0
=
θL
θ

+O(n−1
0 ) as h→ 0.

From the pilot sample X1, · · · , Xm, we calculate U(m) and define

N ≡ N(h) = max

{
m,

[
q∗mU(m)

h

]∗
+ 1

}
.(3)

If N > m, then one takes the second sample Xm+1, . . . , XN . The total observations are X1, . . . , XN .

For the general two-stage procedure defined by (2) and (3), Mukhopadhyay and Duggan (1999) showed

the following second-order efficiency property: as h→ 0, namely as n0 → ∞

ψ + o(n
−1/2
0 ) ≤ E(N)− n0 ≤ ψ + 1 + o(n

−1/2
0 ), where ψ =

c3θ

qθL
.(4)

We shall give a higher-order efficiency property of the above two-stage procedure.

Theorem 1. We have as h→ 0

E(N)− n0 = ψ +
1

2
+O(n−1

0 ), where ψ is as in (4).

Remark 1. The relation (4) consists of inequalities, but our Theorem 1 consists of a equality.

Therefore, our approximation is more accurate and gives a more explicit relation between the average

sample number E(N) and the lower bound θL through ψ than that of Mukhopadhyay and Duggan

(1999). Further, our order term O(n−1
0 ) in Theorem 1 is sharper than the term o(n

−1/2
0 ) in (4).

Throughout the remainder of this paper, we use the following notations:

T̃ =
q∗mU(m)

h
and S = [T̃ ]∗ + 1− T̃ .

Then, (3) becomes N = max{m, [T̃ ]∗ + 1}. Suppose that g: R+ → R+ is a three-times differentiable

function and the third derivative g(3)(x) is continuous at x = 1. By Taylor’s theorem, we have

g(N/n0) = g(1) + g′(1)n−1
0 (N − n0) + (1/2)g′′(1)n−2

0 (N − n0)
2

+(1/6)g(3)(W )n−3
0 (N − n0)

3
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whereW is a random variable such that |W−1| < |(N/n0)−1|. Then we obtain the following theorem.

Theorem 2. If {g(3)(W )n
−3/2
0 (N − n0)

3 ; 0 < h < h0} is uniformly integrable for some sufficiently

small h0 > 0, then as h→ 0

E{g(N/n0)} = g(1) +B0n
−1
0 +O(n

−3/2
0 )

and

E{g(N/n0)} = g(1) +B0n
−1
0 +Ahn

−3/2
0 + o(n

−3/2
0 )

where

B0 = g′(1)

(
ψ +

1

2

)
+ g′′(1)

θ

c1θL
, Ah = g′′(1)n

−1/2
0 E{(T̃ − n0)S}

and |Ah| ≤ |g′′(1)|
√

θ

6c1θL
+O(n

−1/2
0 ) .

Remark 2. Mukhopadhyay and Duggan (1999) showed that as h→ 0

g(1) +B1n
−1
0 + o(n−1

0 ) ≤ E{g(N/n0)} ≤ g(1) +B2n
−1
0 + o(n−1

0 ),

where B1 and B2 are constants, depending on θL. Since we have B1 ≤ B0 ≤ B2, our Theorem 2 gives

a more accurate approximation than that of Mukhopadhyay and Duggan (1999).

3. Bounded risk estimation

In this section, we consider a sequence of i.i.d. random variables X1, X2, X3, . . . from a normal

population N(µ, σ2) where µ ∈ (−∞,∞) and σ2 ∈ (0,∞) are both unknown. We assume that there

exists a known and positive lower bound σ2L for σ2 such that σ2 > σ2L . Having recorded X1, . . . , Xn,

we define

Xn =
1

n

n∑
i=1

Xi and U(n) =
1

n− 1

n∑
i=1

(Xi −Xn)
2 for n ≥ 2.

As stated in Section 1, we want to estimate µ by Xn under the loss function Ln = (Xn − µ)2, where

the risk is given by Rn = E(Ln) = σ2/n. For any preassigned w > 0, we hope that Rn = σ2/n ≤ w,

which is equivalent to

n ≥ σ2

w
≡ n0.

Since we can not use the optimal fixed sample size n0, we define a two-stage procedure. Let

m = m(w) = max

{
m0,

[
σ2L
w

]∗
+ 1

}
,(5)

where m0 ≥ 4 is a preassigned integer. By using the pilot observations X1, . . . , Xm, we calculate U(m)

and

N = N(w) = max

{
m,

[
bmU(m)

w

]∗
+ 1

}
,(6)

where bm = (m−1)/(m−3). It is easy to see that P (N <∞) = 1 for all µ, σ2 and w. Once sampling

stops at stage N , the risk is given by RN = E(XN − µ)2. It follows from section 7c.6 of Rao (1973)
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that RN = E(σ2/N) ≤ w for all fixed µ, σ2 and w. On the notations in Sections 1 and 2, note that

h = w, θ = σ2, q = 1, pm = m− 1 (c1 = 1, c2 = −1) and q∗m = bm = 1+2m−1 +O(m−2) with c3 = 2.

The following proposition follows immediately from Theorem 1.

Proposition 1. For the two-stage procedure defined by (5) and (6), we have as w → 0

E(N − n0) = ψ +
1

2
+O(n−1

0 ), where ψ = 2σ2/σ2L .

We can give an asymptotic higher-order expansion of the risk RN = E(XN − µ)2 by using

Theorem 1 and Theorem 2.

Proposition 2. Let ψ be as in Proposition 1. For the two-stage procedure defined by (5) and (6),

we have as w → 0

RN = w

{
1− 1

2
n−1
0 +Awn

−3/2
0 + o(n

−3/2
0 )

}
where

Aw = 2n
−1/2
0 E{(T̃ − n0)S} with |Aw| ≤ 2

√
σ2

6σ2L
+O(n

−1/2
0 ) ,

T̃ =
bmU(m)

w
and S = [T̃ ]∗ + 1− T̃ .
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