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In the most recent literature, we may find many studies concerning biogeochemical features of 

ecosystems, communities' ecological structure, analysis of multi-temporal and multi-scales data sets coming 

from remote observations, atmospheric pollution modeling and forecasting in which multivariate procedures 

are applied. Particularly we would highlight applications of multivariate methods aimed to compare different 

hierarchical classifications, to reduce model complexity, to support the fuzzy algorithms application, to 

identify structural changes in ecological communities, to analyze geographical and temporal distributions of 

measured variables for evaluating their evolution in scenario analysis (Primpas et al. 2010; Law et al. 2009; 

Qi et al. 2009; Solans Vila and Barbosa 2009; Zou et al. 2009; Fernandez et al. 2008; Penenko and Tsvetova 

2008; Settle et al. 2007; Dawes and Goonetilleke 2006; Felipe-Sotelo et al. 2006; Raik et al. 2006). 

Moreover the joined application of different statistical procedures to characterize multidimensional datasets 

is widely used. Specifically a combination of cluster analysis (CA) and principal component analysis (PCA), 

in order to better characterize the data correlation structure, is currently applied (Katahira et al. 2009; 

Verfaillie et al. 2009; Cosmi et al. 2008; Ragosta et al. 2008; Shah and Shaheen 2008).  

In many of these studies, for a better and easier analysis of the underlying correlation structure of data, 

it may be useful to apply recursively the multivariate data analysis procedure. The definition of new tools, 

able to compare different correlation structures obtained starting from a set of input matrices, becomes a 

crucial point. In this context we propose two new aggregated indices, the Normalized Principal Component 

Index and the Cluster Index, for comparing and interpreting the results of recursive multivariate procedure, 

based on joined application of CA and PCA methods. These indices allow evaluating, quantitatively, a 

standardized weight for descriptors and clusters characterizing each correlation structure.  

In the large part of the multivariate studies, input data are organized in 2D-matrices [object-

observations or object-samples (objects) × measured variables (descriptors)], but it may be interesting to 

investigate the evolution of the system throughout spatial and/or temporal horizons. In these cases the data 

matrices have to be organized in multiD-matrices. We introduce a layer for each spatial or temporal event 

describing different scenarios or characterizing system evolution. Consequently we may organize all input 

data in a 3D-matrix [layers × objects × descriptors].  

Starting from this data matrix, [H layers × M objects × N descriptors], we may determine H 2D-sub-

matrices [M objects × N descriptors] and, for each of these sub-matrices (representing the h-th layer with 
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h=1,...,H), we may calculate 2H association matrices (squared and symmetric matrices) applying different 

similarity measures. Particularly we obtain H association matrices 
h

NNA ],[ , evaluating the correlation 

coefficient among the N descriptors and H association matrices 
h

MMB ],[ , evaluating the distance among the M 

objects.  

Principal Component Analysis (PCA) is applied to A-matrices. For each matrix 
h

NNA ],[  (with 

h=1,…,H), we calculate the eigenvalues ),...,( 1

h

N

h λλ , with 
h

N

h λλ >> ...1 , and the corresponding 

eigenvectors ),...,( 1

h

N

h
aa . Eigenvectors represent mutually orthogonal linear combinations of the original 

descriptors (X1,…, XN), { }N

h

nN

h

n

h

n XlXla ++= ...11  (with h=1,…,H and n = 1,…N), and each of them may be 

considered a new independent variable (Principal Component). Their associate eigenvalues represent the 

amount of total variance explained by each of the new variables. For each eigenvalue 
h

nλ  (with h=1,…,H and 

n = 1,…N), the percentage of variance explained is 100*)%(
∑

=

n

h

n

h

nh

np
λ

λ
. For each layer, in order to 

investigate the nature of the new variables ),...,( 1

h

N

h
aa , we take into account the loading matrix 

h

NNL ],[ , the 

coordinate matrix 
h

NNL
*

],[  and the percentage weight matrix 
h

NNW ],[ . 

The loading matrix is 
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in which 
h

rnl ,  represents the loading of n-th descriptor in the r-th principal component (for each component 

∑=
j

rir l ,λ ); descriptors with loading ≥ 0.5 are considered to be significant for the principal component and 

can give us information about the physical nature of the component. 

The coordinate matrix is 
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in which 
h

rnl
*

,  represents the coordinate of n-th descriptor in the r-th principal component and it is 

h

r

h

rnh

rn

l
l

λ
,*

, =  with ∑ =
r

h

rnl 1*

, ; in this case, the component interpretation is aimed by the sign of the co-

ordinates. 

The percentage weight matrix is 
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in which 
h

rnw ,  represents the percentage weight of n-th descriptor in the r-th principal component and it is 

%)( 2*

,,

h

rn

h

rn lw =  with ∑ ∑ ==
r n

h

rn

h

rn ww %100,, .  

The B-matrices are used for clustering procedure. For each input matrix 
h

MMB ],[  we group the M 

objects in homogeneous sub-groups. For the h-th layer, we have C
h
 clusters. The cluster test and the cluster 

interpretation may be carried out by means of endogenous variables (centroids). The centroids method allows 

relating clusters and descriptors and it may simplify the characterization and the interpretation of the 

grouping. For the h-th layer (h = 1,…,H) and for the j-th cluster (j = 1,…,C
h
) of the matrix 

h

MMB ],[ , the 

percentage centroid is 

%)%(
,

, 
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in which 
h

njV ,  is the mean values of the n-th descriptors (n = 1,…,N) calculated on the objects included in the 

j-th cluster and 
h

nV  is the mean values of the n-th descriptors (n = 1,…,N) calculated on all the M objects. In 

this way for the j-cluster we have a centroids vector ),...,( ,1,

h

Nj

h

j

h

j ctctct = and for each layer we have a 

centroid matrix 
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characterizing each run of recursive clustering procedure.  

In this methodological context, two indices are proposed: Normalized Principal Component Index 

(NPCI) and the Cluster Index.(CI) For the h-th layer, starting from PCA, we take into account the Q
h 

eingenvalues higher than 0.5 ),...,( 1

h

Q

h λλ  with 
h

Q

h λλ >> ...1 , the corresponding percentages of explained 

variance %)%,...,( 1

h

Q

h
pp , with ∑

=

=
Q

q

h

q

h
pP

1

% , and the corresponding eigenvectors ),...,( 1

h

Q

h
aa . Starting 

from the reduced percentage weight matrix  
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in which %100
1

, =∑
=

N

n

h

nqw , we may calculate for the n-th descriptor, the Principal Component Index (PCI) 

and the corresponding normalized value (NPCI), following the formulas  
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∑
=

n

h

n

h

nh

n
PCI

PCI
NPCI  

in which Q
h
 is the number of retained eigenvalues, P

h
 is the corresponding percentage of explained variance, 

%100
1

, <=∑
=

Q

q

h

nq

h

n wwq is the cumulative percentage weight of the n-th descriptor in the Q
h
 principal 

components; 
h

nw max  is the maximum percentage weight ),...,max( ,1,max

h

Qn

h

n

h

n www = ; 
h

nR  is the rank of the 

principal component in which 
Q

q

h

qnw 1, )( =  show the maximum value and 
h

np
*

is the percentage of explained 

variance by this component.  

NPCI is able to evaluate a standardized weight for each descriptor in a correlation structure. It 

represents a quantitative tool to compare the role of each descriptor in different layers and 

contemporaneously, the role of different descriptors in each layer. NPCI low values indicate descriptors with 

a marginal role in the correlation structure; NPCI high values indicate dominant descriptors.   

Starting from the centroid vector calculated for the j-th cluster ),...,( ,1,

h

Nj

h

j

h

j ctctct = and the values of 

the index NPCI for the N descriptors in the h-th layer (
h

N

h
NPCINPCI ,...,1 ), we may calculate also the 

Cluster Index as 

∑
=

=
N

n

h

n

h

nj

h

j NPCIctCI
1

, ))((  

This index allows evaluating the role of different clusters in the correlation structure. In fact, the index 

formulation gives a greater weight to the cluster in which a dominant descriptor shows high centroid. In the 

analysis and in the interpretation of the underlying structure correlation, this cluster index is able to simplify 

the cluster identification and the cluster test. 

In conclusion NPCI and CI allow to evaluate and to compare descriptors and clusters role in different 

correlation structures. These indices are very effective to interpret the role of different variables in scenario 

analysis. Particularly we suggest their application in environmental decision-making processes for 

sustainability polices that requires the handling of multi-dimensional and multi-scale datasets. 
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