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Abstract: In this approach, we construct the necessary and sufficient conditions in order a James-
Stein type estimator outperforms the minimax estimator of the mean. Particularly we consider a class
of spherically symmetric distributions and derive the dominating conditions under the quartic loss
function. Multivariate Student’s t and Slash distributions as two examples are also considered for
checking the efficiency of the proposed model and specifying theoretical requirements.
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1 Introduction

Definition 1.1. An absolutely continuous random n-vector X = (X1, · · · , Xn)′ has elliptically con-
toured distribution with parameters θ ∈ Rp, Σ ∈ S(p) and ψ(.) ∈ [0,∞) → R if its characteristic
function is φ(t) = eit′θψ (t′Σt) . Furthermore, if X possess a density, then it can be presented by

fX(x) = dp|Σ|−
1
2 g

[
(x− θ)′Σ−1(x− θ)

]
,(1)

where dp is the normalizing constant, satisfying the condition dp =
∫∞
0 t

p
2
−1g(t)dt < ∞, where g(.) is

a non-negative Lebesgue measurable function. In this case we use the notation X ∼ ECp(θ,Σ, g).

ECD provides highly impressive list of heavier/lighter tail alternatives to the multivariate Gaus-
sian models. Some recent materials involving vector-variate distributional properties and inferential
problem will be found entirely in the work of Muirhead (1982), Fang et al. (1990) and Fang and Zhang
(1990). Some of the well known members of the multivariate spherically/elliptically contoured family
of distributions are the multivariate normal, Kotz Type, Pearson Type VII, Multivariate Student’s t
(MT), Multivariate (MS), Logistic, Multivariate Bassel distributions.

Lemma 1.1. (Chu, 1973) If X ∼ ECp(θ,Σ, g), then

fX(x) =
∫ ∞

0
W (t)Np

(
θ, t−1Σ

)
dt =

∫ ∞

0
W (t)

t
p
2 |Σ|− 1

2

(2π)
p
2

exp
[
− t

2
(x− θ)′Σ−1(x− θ)

]
dt,

where W (t) = (2π)
p
2 |Σ| 12 t−

p
2L−1[f(s)], L−1[f(s)] denotes the inverse Laplace transform of f(s) with

s = (x− θ)′Σ−1(x− θ)/2.

The elliptical distributions are the parametric forms of the spherical symmetric distributions,
which are invariant under orthogonal transformations and have equal density on sphere if densities
exist. In this paper we actually deal with spherical models i.e. Σ = Ip.

Let X = (X1, ..., Xp) distributed according to the model (1) when Σ = Ip. Following Fourdrinier
et al. (2008) we basically engage with the problem of estimating θ = (θ1, ..., θp) under the quartic loss
function

L(θ, δ(X)) =
p∑

i=1

(δi(X)− θi)4,(2)

Where δ(X) = (δ1(X), ..., δp(X)) estimates θ = (θ1, ..., θp), and investigate the conditions for which
an estimator δ(X) = X + g(X) dominates X for p ≥ 3. We give an extension to the earlier work for
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the class of scale mixture of multivariate normal distributions. More important we show the robustness
of the superiority conditions for the classes under study.

As it is noted in the earlier work, the quartic loss is neither quadratic nor spherically symmetric.
Hence our results represent an interesting example of the stein effect whereby reasonably explicit
dominating estimators can be obtained in a setting that is somewhat unusual.

To be honest we must say that all fundamental computations are followed by the utilities given
in Fourdrinier et al. (2008).

2 Minimax estimators under quartic loss

The measurement associated with the quartic loss given by (2) is R(θ, δ) = Eθ[L(θ, δ(X))], Where
Eθ denotes the expectation with respect to the sampling distribution (1). It is easy to show that for
the minimax estimator δ0(X) = X, R(θ, δ0(X)) = 3p, since

∫
W (t)dt = 1. Following Stein (1981)

we take the class of shrinkage estimators δ(X) of θ of the form δ(X) = X + g(X) into consideration
where g is a function from Rp into Rp. Note that from Stein identity and using Lemma 1.1 for the
weakly differentiable function g we can immediately conclude that

Eθ [(Xi − θi)gi(X)] = Eθ {Et [(Xi − θi)gi(X)|t]} =
∫ ∞

0
Eθ

[
(Xi − θi)gi(X)

∣∣∣∣t
]

W (t)dt

=
∫ ∞

0
t−1 Eθ

[
∂

∂Xi
gi(X)

∣∣∣∣t
]

W (t)dt = κ(1,1,1)(3)

where

κ(l,j,k) =
∫ ∞

0

(
1
t

)l

Eθ

[
∂j

∂Xj
i

gk
i (X)

∣∣∣∣V = t

]
W (t)dt.(4)

More precisely

κ(i) =
∫ ∞

0

(
1
t

)i

W (t)dt.(5)

Lemma 2.1. Assume that g is a three times weakly differentiable function from Rp into Rp satisfying
Eθ

[
g4
i (X)

]
< ∞, for every 1 ≤ i ≤ p. Then, under quartic loss (2), an unbiased estimator of the risk

difference ∆θ between δ(X) = X + g(x) and δ0(X) = X is

ðg(X) =
p∑

i=1

[
g4
i (X) + 6κ(1)g2

i (X) + 12κ(2,1,1) + 4κ(1,1,3) + 6κ(2,2,2) + 4κ(3,3,1)

]
.

Proof: First consider that

∆θ = R(θ, δ(X))−R(θ, δ0) = Eθ

[
L(θ, δ(X))− L(θ, δ0)

]

= Eθ

{
p∑

i=1

[
g4
i (X) + (4(Xi − θi)g3

i (X) + 6(Xi − θi)2g2
i (X) + 4(Xi − θi)3gi(X))

]
}

.

Applying extended Stein’s identity (3) repeatedly, we find

Eθ

[
(Xi − θi)g3

i (X)
]

= κ(1,1,3), Eθ

[
(Xi − θi)2g2

i (X)
]

= κ(1,1,2) + κ(2,2,2),

Eθ

[
(Xi − θi)3gi(X)

]
= 3κ(2,1,1) + κ(3,3,1).

Gathering all the above terms, the result follows. ¤
From lemma 2.1 one can find that any estimator δ(X) = X + g(X) dominates δ0(X) = X

under the quartic loss (2) as soon as Eθ

[
g4
i (X)

]
< ∞, for every 1 ≤ i ≤ p, is satisfied and

ðg(x) ≤ 0 ∀x ∈ Rp(6)

with strict inequality on a set of positive Lebesgue measure.
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3 Class of James-Stein Estimators

Two typical classes of Shrinkage Stein-type estimators include well-known classes of James-Stein esti-
mators. We basically involve with two types of shrinkage functions. Item one includes the one in (6)
resulting on the following James-Stein (JS) estimator

δJS
a (X) = X − a

‖X‖2
X.(7)

For better understanding of the finiteness condition Eθ

[
g4
i (X)

]
< ∞, we turn our attention to the

shrinkage function g(X) = ga(X) = −
(

a
‖X‖2

)
X, a > 0. For the specified class in (7), applying

Theorem 1 of Bock et al. (1983) we have

Eθ

(
g4
i (x)
a4

)
≤ Eθ

(
1

‖x‖4

)
= EtEθ

(
1

‖x‖4

∣∣∣∣t
)

=
∫ ∞

0
t2Eθ

[
χ−2

p

(
t‖θ‖2

) ∣∣∣∣t
]2

W (t)dt < ∞(8)

for p > 4 and such distribution in which κ(−2) < ∞.
Item two deals with the shrinkage function ga,b(X) = −

(
a

‖X‖2+b

)
X (with a > 0 and b > 0)

resulting on the following JS estimator

δJS
a,b(X) = X − a

‖X‖2 + b
X.(9)

Now consider the JS class of estimators defined by (8). For the finiteness condition Eθ

[
g4
i (X)

]
< ∞

consider that

Eθ

(
g4
i (x)
a4

)
≤ Eθ

(‖x‖4

b4

)
=

1
b4

∫ ∞

0
t−2Eθ

[
χ2

p

(
t‖θ‖2

) ∣∣∣∣t
]2

W (t)dt

=
1
b4

∫ ∞

0
t−2

[
p(p + 2) + 2(p + 2)t‖θ‖2 + t2‖θ‖4

]
W (t)dt

=
1
b4

[
p(p + 2)κ(2) + 2(p + 2)‖θ‖2κ(1) + ‖θ‖4

]

< ∞,(10)

provided that κ(i) < ∞, i = 1, 2 and ‖θ‖2 < ∞.

Lemma 3.1. Assume that p ≥ 5. Under quartic loss (2), an unbiased estimator of the risk difference
∆θ between δJS

a (X) and δ0(X) = X is expressed as

ðga(X) = a

[(
a3 + 24κ(1)a2 + 144κ(2)a + 192κ(3)

)∑p
i=1 X4

i

‖X‖8
+ 6κ(1)

(
a− 2t(p− 2)

)
1

‖X‖2

−12
(

a2κ(1) − (p− 10)aκ(2) − 2κ(3)(p− 8)
)

1
‖X‖4

]
.

Proof: The result follows from Lemma 2.2 of Fourdrinier et al. (2008) and Lemma 2.1. ¤

Theorem 3.1. Under the model (1), the JS estimator given by (7) dominates δ0(X) under quartic
loss (2), for all θ ∈ Rp, provided p ≥ 7, and

0 < a < min
{

2κ(1)(p− 2), sup{s ≥ 0/h(s) = 0}
}

,

where h(s) = s3 + 12κ(1)s2 + 18spκ(2) − 12κ(3)(p− 4− 2
√

2)(p− 4 + 2
√

2).
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Proof: Under conditioning, the risk difference ∆θ is bounded above by

aEt

{
Eθ

[
(a3 + 24t−1a2 + 144at−2 + 192t−3)

1
‖X‖4

+ 6t−1(a− 2t−1(p− 2))
1

‖X‖2

−12(a2t−1 − (p− 10)at−2 − 2t−3(p− 8))
1

‖x‖4

]}

= aEt

{
Eθ

[
(a3 + 12t−1 a2 + 12a t−2(p + 2) + 24pt−3)

1
‖X‖4

+6 t−1(a− 2t−1(p− 2))
1

‖X‖2

]}
.(11)

Thus applying Lemma A.3 of Fourdrinier et al. (2008), by the assumption a < 2κ(1)(p−2), the bound
in (11) reduces to

a
[
(a3 + 12κ(1)a2 + 18apκ(2) − 12κ(3)(p− 4− 2

√
2)(p− 4 + 2

√
2))

]
Eθ

[
1

‖X‖4

]
.

setting h(a) = a3 + 12κ(1)a2 + 18apκ(2) − 12κ(3)(p − 4 − 2
√

2)(p − 4 + 2
√

2), it is clear that h(0) =
−12κ(3)(p−4−2

√
2)(p−4+2

√
2) < 0 since p ≥ 7 and κ(1) > 0. Furthermore this cubic polynomial is

increasing in a and hence negative on the interval [0, a0] where a0 is its smallest root a0 > 0. Finally,
for 0 < a < min{2κ(1)(p− 2), a0}, we have ∆θ < 0, which is the desired domination result. ¤
Theorem 3.2. Under the model (1), the JS type estimator in (7) dominates δ0(X) under quartic
loss (2), for all θ ∈ Rp, provided p ≥ 5 and 0 < a ≤ 2κ(1)(p− 4).

Proof: Applying Lemma A.2 of Fourdrinier et al. (2008) and continuing in the same way as Theorem
3.1, the result follows. ¤
Theorem 3.3. Under the model (1), the risk R(0, δJS

a ) of the JS estimator at θ = 0 under quartic
loss (2) is

3
(p + 2)

(
κ(2)p (p + 2)− 4ap κ(1) + 6a2 − 4

a3

κ(1)(p− 2)
+

a4

κ(2)(p− 2)(p− 4)

)

and it is finite provided p− 4 > 0.

Proof: Similar to the computations in the proof of Proposition 2.2 of Fourdrinier et al. (2008), the
risk of JS estimators at 0 under quartic loss (2) is given by

R(0, δJS
a ) = Et

{
Eθ

[
p∑

i=1

(
1− a

‖X‖2

)4

X4
i

]}

= pEt

{
Eθ

[
X4

i

‖X‖4

]
Eθ

[
‖X‖4

(
1− a

‖X‖2

)4
]}

,

since Yi|t = X2
i

‖X‖2

∣∣∣∣t is independent of ‖X‖2|t for i = 1, ..., p. As the distribution of Yi|t is

Beta (1/2, (p− 1)/2) and the distribution of ‖X‖2|t is t−1χ2
p,

Eθ

[
X4

i

‖X‖4

]
= EtEθ[Y 2

i ] = Et

[
B(1

2 + 2, (p− 1)/2)
B(1

2 , (p− 1)/2)

]
=

3
p (p + 2)

,

since
∫∞
0 W (t)dt = 1 and

Eθ

[
‖X‖4

(
1− a

‖X‖2

)4
]

= EtEθ

[
‖X‖4 − 4a‖X‖2 + 6a2 − 4

a3

‖X‖2
+

a4

‖X‖4

]

=
∫ ∞

0

[
t−2 p (p + 2)− 4 a p t−1 + 6a2 − 4

a3

t−1(p− 2)

+
a4

t−2(p− 2)(p− 4)

]
W (t)dt.
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Simplifying the above result, completes the proof. ¤
Similar to the Lemma 3.1, we have the following parallel result to the Lemma 3.1 of Fourdrinier

et al. (2008) under the model (1).

Lemma 3.2. Assume that p ≥ 3. Under quartic loss (2), an unbiased estimator of the risk difference
∆θ between δJS

a,b(X) and δ0(X) = X is expressed as

ðga,b(X) = a

[(
a3 + 24κ(1)a2 + 144κ(2)a + 192t3

) ∑p
i=1 X4

i

(‖X‖2 + b)4
− 12pκ(2) 1

‖X‖2 + b

+6κ(1)(a + 4κ(1))
‖X‖2

(‖X‖2 + b)2
− 12κ(1)(a + 2κ(1))(a + 8κ(1))

‖X‖2

(‖X‖2 + b)3

+12pκ(2)(a + 2κ(1))
1

(‖X‖2 + b)2

]
.

Theorem 3.4. Under the model (1), the JS estimator δJS
a,b(X) given by (8) dominates δ0(X) under

quartic loss (2), for all θ ∈ Rp, provided p ≥ 3 and

0 < a ≤ 2κ(1)(p− 2) and b ≥ max

{
a3 + 24κ(1)a2 + 12κ(2)a(p + 12) + 24pκ(3)

12κ(1)(3pκ(1) − a− 4κ(1))
, a + 2κ(1)

}
.

The proof is similar to that of given in Theorem 3.1 with some utilities provided in the proof of
Theorem 3.1 of Fourdrinier er al. (2008).

4 Examples

In this section we provide some examples of scale mixture of normal distributions to determine the
superiority conditions proposed in the previous section precisely. For this purpose, we need to compute
the expression κ(i) given by (5) for each distribution.

4.1 MT distribution

Suppose that X is distributed according to a MT distribution with unknown location parameter θ,
scale Ip and ν > 0 degrees of freedom, denoted by X ∼ tp(θ, Ip, ν), with the following pdf

f(x) =
Γ

(p+ν
2

)

(πν)
p
2 Γ

(
ν
2

)
(

1 +
x′x
ν

)− p+ν
2

.

The distribution is the mixture of multivariate normal distributions with the inverse gamma distribu-
tion as the weight function given by

G(t) =
ν

ν
2 t

ν
2
−1e−

νt
2

2
ν
2 Γ

(
ν
2

) .(12)

By making use of the equations (5) and (12) we obtain κ(i) =
∫∞
0

ν
ν
2 t

ν
2−i−1e−

νt
2

2
ν
2 Γ( ν

2 )
dt =

(
ν
2

)i Γ( ν
2
−i)

Γ( ν
2 )

.

Consequently since κ(1) = ν
ν−2 < ∞, κ(2) = ν2

(ν−2)(ν−4) < ∞, κ(−2) = (ν−2)(ν−4)
ν2 < ∞, the finiteness

conditions in (8) and (10) are satisfied.

4.2 MS distribution

Suppose that X is distributed according to a MS distribution with unknown location parameter θ,
scale Ip, denoted by X ∼ Sp(θ, Ip, 1), with the following pdf

f(x) =
∫ 1

0
upφp(ux;uθ, Ip)du =





2
p+1
2 −1γ

(
p+1
2

;
‖x−θ‖2

2

)

(2π)
p
2 ‖x−θ‖p+1

x 6= 0

1
p+1

(
1
2π

) p
2 x = 0

,
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Figure 1: R(0, δJS
a ) for MT model when p = 7

where γ(a; z) =
∫ z
0 ta−1e−tdt =

∑∞
k=0

(−1)kza+k

k!(a+k) . See Wang and Genton (2006) for more details.
Note that the MS distribution is a scale mixture of the normal distributions (see e.g. Fang et

al., 1990) and so it can be represented as:

X|V = t ∼ Np(θ, t−1Ip), V ∼ U(0, 1).(13)

Thus by making use of the equations (5) and (13) we have κ(i) =
∫ 1
0 t−idt = 1

1−i . One can immediately
find that κ(1) = ∞ and thus the required finiteness conditions are not satisfied.
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