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ABSTRACT

An important problem in genetics is detecting single nucleotide polymorphisms (SNPs),
sites along the genome at which a population shows variation. The focus is on the detection
of rare variants. Pooling individuals allows us to increase the probability that a rare variant
appears in the sample. However, as the pool size increases, the mean number of reads from an
individual decreases, making it harder to distinguish reads of a rare variant from errors. This
paper compares three statistical tests for detecting SNPs using data from pooled DNA samples.

Introduction

The genome consists of sequences made of 4 nucleotides (bases). At a majority of the sites
in these sequences, each individual in a population has the same base. A site where there is
variation is called a single nucleotide polymorphism (SNP). At such sites, in general, just two
of the four bases appear. These variants are called alleles, the most common (rare) is termed
the major allele (minor allele, respectively). We treat chromosomes, rather than members of a
species, as individuals. However, our analysis can be generalized.

Since any reasonable test detects alleles of large frequency with power close to 1, we
concentrate on the detection of low frequency alleles. Following Futschik and Schlötterer (2010),
one may use the following test (referred to as the maximum test): accept that there is a minor
allele if in any lane the number of reads for a non-major allele exceeds a given threshold. Ramsey
and Futschik (2011) develop this work by specifying this threshold given the parameters of the
sequencer and significance level required. An estimate of the power of this test is derived, which
is used to find the asymptotically optimal pool size (optimal for detecting low frequency alleles).

One possible disadvantage of the test procedure described above lies in the fact that it
only utilizes the maximum number of reads of a prospective minor allele from a lane and not
the number of reads of a putative minor allele from each lane. For this reason, we compare
the maximum test with two likelihood ratio tests, which use the number of reads of a putative
minor allele from each lane. It is shown that for practical problems the maximum test is very
effective. For more on the practical issues involved in gene pooling see Kenny et al. (2010).

Description of the Problem and a Simplified Model

Genome sequencers read DNA from a pool (of m individuals) placed in a lane. Suppose
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we have k independent pools, i.e. the sample size is n = km. Consider a given site. If the
same (large) amount of genetic material is taken from each individual, we may assume that the
number of reads from an individual given there are r reads for that site in a lane has a binomial
distribution with parameters r and 1/m. Suppose that each read is incorrect with a small
probability ε, independently of other reads. Also, suppose that only two alleles are possible, the
major allele and the putative minor allele.

Let R = (R1, R2, . . . , Rk), where Ri is the total number of reads for that site in lane i. It
is assumed that the Ri are i.i.d. from the Poisson(λ) distribution. In addition, suppose good
estimates of λ and ε are available for the gene sequencer used.

The major allele is inferred to be the one with the largest number of reads in the whole
sample. As we are interested in detecting low frequency alleles, we may assume that for reason-
able sample sizes the major allele is correctly identified with probability 1.

Denote the minor allele frequency at a given locus by p. We wish to define statistical tests
of the following hypotheses.

H0: The locus is not a SNP, i.e. p = 0.
HA: p = p0, where p0 is some small positive value.
Let X = (X1, X2, . . . , Xk), where Xi is the number of reads of the putative minor allele

in lane i. Define Ai to be the number of individuals with the minor allele in lane i and A =
(A1, A2, . . . , Ak). Note that Ai ∼Bin(m, p). We observe X and R. The vector A can only be
estimated from the data.

Consider the distribution of Xi conditional on the number of individuals with the minor
allele and the total number of reads in lane i. Suppose that there is no-one with the minor allele
in a pool. In this case, the number of reads of the prospective minor allele is simply the number
of errors. Given Ri = r, Xi has a binomial distribution with parameters r and ε. It follows
that Xi has a Poisson distribution with parameter λε. Now suppose that there are a individuals
with the minor allele in a pool of m individuals, a ∈ {1, 2, . . . ,m}. From our assumptions, the
distribution of Xi given Ri = r and Ai = a is the binomial distribution with parameters r and
q(a), where

q(a) =
a(1− ε)

m
+

ε(m− a)
m

.

Hence, Xi has a Poisson distribution with parameter λq(a). Note that if ε is small in comparison
to 1/m, then for a ≥ 1, q(a) ≈ a/m.

Likelihood Ratio Tests

Based on the model presented in the previous section, we derive two likelihood ratio tests
of the null hypothesis that there is no variation at a site. We treat the number of reads from a
lane as an ancillary statistic (see Lehmann (1986), Chapter 10, Section 2). Hence, we compute
our likelihoods conditional on R1, . . . , Rk. Under the alternative hypothesis, these likelihood
functions also depend on the (unobserved) number of individuals with the minor allele in each
lane. Firstly, we consider the likelihood of the number of reads of a prospective minor allele
from a single lane. Under the null hypothesis that there is no variation at a site, we have

L0(xi|Ri = ri) =
(

ri

xi

)
εxi(1− ε)ri−xi .

Similarly, under the alternative hypothesis

L1(xi|Ai = ai, Ri = ri) =
(

ri

xi

)
[q(ai)]xi [1− q(ai)]ri−xi ,
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where Ai ∼ Bin(m, p). In the case Ai = 0, this is simply the likelihood under the null hypothesis.
A likelihood ratio test can be obtained by considering the information from all k lanes.

This can be done in two ways: either we assume that the pools are obtained by sampling from a
large population where the minor allele frequency is p, or we assume that the pools come from
subpopulations with possibly different minor allele frequencies. In the second case, we simply
infer the number of individuals with the minor allele in each pool. The denominator of the
likelihood ratio is the same in both cases:

k∏
i=1

L0(xi|Ri = ri) = ε
∑k

i=1 xi(1− ε)
∑k

i=1(ri−xi)
k∏

i=1

(
ri

xi

)
.

We start by considering the first strategy. In this case, the numerator is given by

k∏
i=1

L1(xi|Ri = ri) =
k∏

i=1

m∑
ai=0

L1(xi|Ai = ai, Ri = ri)P (Ai = ai)

=
k∏

i=1

m∑
ai=0

(
m

ai

)
pai(1− p)(m−ai)

(
ri

xi

)
[q(ai)]xi [1− q(ai)]ri−xi .

Setting p = 0, we obtain the likelihood under the null hypothesis. In the second case, where the
ai are considered as unknown parameters, we set

k∏
i=1

L1(xi|Ai = ai, Ri = ri) =
k∏

i=1

(
ri

xi

)
[q(ai)]xi [1− q(ai)]ri−xi .

The likelihood under the null hypothesis is obtained by setting a1 = · · · = an = 0. We
now maximize the numerator and compute the likelihood ratio. In the first case, this leads to

(1) LR1 =
maxp

∏k
i=1

∑m
ai=0

(
m
ai

)
pai(1− p)(m−ai)[q(ai)]xi [1− q(ai)]ri−xi

ε
∑k

i=1 xi(1− ε)
∑k

i=1(ri−xi)
.

The second approach leads to the somewhat simpler expression

(2) LR2 =
∏k

i=1 maxai [q(ai)]xi [1− q(ai)]ri−xi

ε
∑k

i=1 xi(1− ε)
∑k

i=1(ri−xi)
,

where maximization can be carried out separately for each pool. The corresponding likelihood
ratio test statistics are 2 log(LR1) and 2 log(LR2).

Likelihood ratio tests are very popular, and under suitable regularity conditions, their
asymptotic properties are well understood. Indeed, in such a situation the null distribution of
2 log(LR1) would be approximately chi-square with one degree of freedom and that of 2 log(LR2)
a χ2

k distribution (see for instance Chapter 4 in Davison (2008)). However, the regularity as-
sumptions on which this approximation is based are not satisfied here, as the null parameters
are at the boundary of the parameter space and the ai only vary on a discrete set of possibilities.

The Maximum Test

Consider the test statistic U = max1≤i≤k Xi, i.e. U is the maximum number of reads of a
putative minor allele in a lane. Under H0, U is the maximum of independent observations from
the Poisson(λε) distribution. The critical value for the test, uk, is the smallest integer satisfying

P (U≤uk|H0)≥1− α⇒P (Xi≤uk|H0)k≥1− α⇒P (Xi≤uk|H0)≥ k
√

1− α.
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Thus we can take the k
√

1− α quantile of the Poisson(λε) distribution as the critical value. We
reject H0 if and only if U > uk.

Under HA the number of minor alleles in the sample has a Bin(n, p0) distribution. Ramsey
and Futschik (2011) derive an approximation for the power of such a test for small p0 and use
this to define the asymptotically (as p0 → 0) optimal pool size. Note that the asymptotically
optimal pool size is independent of p0.

Results from Simulations

In order to estimate the power of the tests for given frequencies of the minor allele p ∈
{0.005,0.01,0.02,0.05}, error probabilities ε∈{0.001,0.002,0.005,0.01} and number of lines k∈
{16,40,80,120}, we simulated ten thousand tests for each case with a maximum pool size of
10. It should be noted that the asymptotically optimal pool size in the problems considered is
between three and six. The empirically determined optimal pool size for a particular test was
taken to be the minimum pool size for which the maximum power was obtained.

It should be noted that the LR1 test requires numerical maximization, in order to calculate
the likelihood ratio statistic. The numerator of this expression (see Equation 1) was calculated
at a grid of 20 equally spaced points p = 0.003, 0.006, . . . , 0.06. Further simulations indicate
that increasing the density of grid points did not not lead to any visible gain in power.

We carried out simulations under three models:

Model 1 Any errors in reading the major allele give the same allele (the minor allele, if one
exists) and errors in reading the minor allele give the major allele.

Model 2 Any errors in reading an allele always give the same allele, which is neither the major
nor the minor allele.

Model 3 An error is equally likely to give any of the three other possible alleles.

Note that Model 1 corresponds to the statistical model described above. In Cases 2 and
3, more than two alleles can be observed at a site. As before, the major allele is assumed to be
the allele with the largest number of reads in the whole sample. Using the maximum test, the
putative minor allele is taken to be the non-major allele with the largest number of reads from a
single lane. In the case of the likelihood ratio tests, we consider each of the 3 non-major alleles
in turn. Each time, we classify the reads into two groups: (a) reads of the allele considered, (b)
all other reads (we assume that these reads are of the major allele). We can then calculate the
realization of the likelihood ratio statistic (LR1 or LR2) corresponding to each of the non-major
alleles according to Equation (1) or (2), as appropriate. The putative minor allele is defined
to be the one for which the maximum is achieved. If this statistic exceeds the appropriate
critical value, then we accept that the putative minor allele is present. Note that it is possible
to correctly reject H0, but incorrectly infer which base is the minor allele. For such an error
to occur, the test statistic corresponding to a non-present allele must exceed both the critical
value for the test and the test statistic corresponding to the real minor allele. For this reason,
we expect the probability of such an error to be smaller than the nominal significance level.

Figures 1 and 2 illustrate the results obtained for Model 1 using the appropriate asymptotic
distributions to define the critical values for the likelihood ratio tests. Figure 1 is typical of cases
for which several individuals with the minor allele are expected at the asymptotically optimal
pool size. This version of the LR2 test is clearly less powerful than the other two tests. The power
of the LR2 test was improved by using Monte Carlo simulation to estimate the critical value
empirically. However, the power obtained using the other two tests remained superior. Hence,
the LR2 test was not applied to the other two models. For pool sizes below the asymptotically
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Figure 1: Comparison of the power of the three tests for various pool sizes, p = 0.01,
k = 80, ε = 0.001, α = 0.001. Based on 10,000 simulations.

optimal pool size, the empirical power of the maximum and LR1 tests were almost identical.
For larger pool sizes, the power of the LR1 test seems to increase slightly before plateauing,
whilst the power of the maximum test slowly declines. Figure 2 is typical of the cases for which
at most a couple of individuals with the minor allele are expected at the asymptotically optimal
pool size. In this case, the maximum test works slightly better than the LR1 test over the range
of pool sizes considered. This is not particularly surprising, since in this case almost all the
information regarding the presence of a minor allele is contained in the maximum number of
reads of a putative minor allele from a lane.

The results obtained under Model 2 are very similar to the results obtained under Model
1, except that the empirical powers of the maximum and LR1 tests are slightly lower (mistakes
in reading the major allele do not give the minor allele). The empirical probability of detecting
the ”wrong” minor allele is small compared the nominal significance level. Similar results are
obtained under Model 3 using the maximum test. Under this model, the empirical power of
the LR1 test was clearly greater than that of the maximum test. However, further investigation
indicated that the gain in power was comparable to the gain in power obtained using the maxi-
mum test when the error rate falls from ε to ε/3 (the probability of a particular type of error).
This suggests that it is relatively easy to adapt the maximum test when errors of various types
can occur. In addition, in practice most misreads of an allele will give one particular allele.

In all cases, the tests are conservative (i.e. the empirical significance level is less than the
nominal significance level). The empirically defined optimal pool sizes for the maximum test are
robust to deviations from Model 1 and agree very well with the analytically derived pool sizes.

Conclusions

Compared to the maximum test, the LR1 test can give a gain in power by using a larger
pool size than the asymptotically optimal pool size when there are expected to be at least several

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS060) p.5371



Figure 2: Comparison of the power of the maximum test and the LR1 test for various

pool sizes, p = 0.005, k = 16, ε = 0.01, α = 0.001. Based on 10,000 simulations.

individuals with the minor allele in the sample. In practice, the pool size cannot be adapted to
the expected number of individuals with a minor allele and using a relatively large pool size to
improve detection of somewhat rare alleles will lead to a lower power in detecting rarer alleles.
The results of the simulations indicate that the asymptotically optimal pool size is optimal or
near optimal over a wide range of realistic parameters. These results suggest that using a fixed
threshold to call SNPs is an effective and flexible procedure. One problem with this approach
lies in the fact that λ varies from site to site. It is intended that future research will adapt the
ideas presented in this paper to the analysis of real data.
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