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1 Introduction

Let X1,..., X, be asequence of independant random variables of distribution function F’ with F'(1) =
0, and let Xy, < Xo,,... < X, ,, denote the order statistics of Xy,...,X,, for any fixed n > 1. Let
k = k(n) be sequence of positive integers satisfying:

(K) k— 400, k/n—0, and loglogn/k—0 as n— +oo

We are concerned with this follow stochastic process

Xn—k—i—l,n - Xn—[k;/s}-i—l,n

(1.1) Po.(s) = log(1/s) ! log e for s*>

SRS

—[k/s]+1,n — X’I’L—[k}/82]+1,n ’

If 2 < % we put P,(s) = 0. For s = 1/2, P,(1/2) is the so-called Pickands estimator of the
extremal index v when }17 is in the extremal domain of a Generalized Extreme Value Distribution
Gy () =exp(—(1+~x) 7), for 14~z >0, withyeR.

This stochastic process has been studied by many authors: Alves (1995), Falk (1994), Pereira (1994),
Yun (2000 and 2002), Segers (2002) [8], etc. This latter gave a summarize of the previous works.
The handling of the Pickands process heavily depends that of the stochastic process of the large
quantiles{Xn_[k/S]Jan, n > 1} .

Drees (1995) [4] and de Haan and Ferreira (2006)[3] provided asymptotic uniform and Gaussian ap-
proximation of(1.1) when F is in the extremal domain under second order conditions. Segers (2002)]8]
used such results to construct new estimators of the extremal index with integrals of statistics on the
form of P,(s). This motivates us to undertake a purely stochastic process approach of the Pickands
process in a simpler way but in a more adequate handling in order to derive from this study many
potentials applications.

2 Results

Let us introduce some notation. First define the generalized inverse of F': F~1(s) = inf {z, F(x) > s},
0<s<1,and let

B Ly YA [k/s)/n) ~ FY(1 — k/n)
pn(s) = log(1/s)™" log F-1(1—[k/s?2]/n) — F-Y(1 — [k/s]/n)

We are going to investigate this Pickands process {n(s), % <s?<1}= {\/E(Pn(s) —pa(s)), £ < s? < 1}
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But it is easy to see that P,(s) = K(v) = 71{y£4o0} for F' € D(Gy/,). This extends the motivation
to the study of {k%(s), & < s2 <1} = {\/%(Pn(s) ~K(v),E<s?< 1}.
Since our conditions depend on auxilliary functions of the representations of functions in the extremal

domain F' € D(Gl/v), v <0, v >0, y=-+o00. For the Frechet case v > 0, we have

(2.1) F7Y1 —u) = (1 + p(u))u KO exp(/1 t1b(t)dt).

u

where (p(u),b(u)) — (0,0) quand u — 0, ¢ is a positive constant The representations (2.1) is the
Karamata representation.

We fixe two numbers a and b, a < b, such that [a,b] C]0,1[. For each v > 0, we will note a(u) =
F~1(1—w) and for v < 0, a(u) = z0 — F~1(1 —u). Set k,2 = [a~2]k and A > 1 a real number. Finally
we define for an arbitrary function h defined on (0, 1) in R,

ha(\hia)=  sup  |h(t)].
0<t<Ak,2/n

We shall consider the regularity conditions
(RC1) Vkpn(A,p,a) = 0

and

(RC2) Vb, (X, b,a) — 0.

All unspecified limits occur when n — oco. Finally we denote o0,(s,a) et 0,(s,a,b) respectively the
uniform limits in s € [0, 1] and s € [a, b]. Here are our main results.

Theorem 1 Let F' € D(Gy/y), v <0,7>0,v=+00. Let 0 <a <b<1. If (RC1) and (RC2) hold

then {kn(s),s € [a,b]} converges to a Gaussian process {G(s),a < s < b} in £>°([a,b]), of covariance

function
1
[(s.1) = KO DK 1) 2 KO K
(5:0) == TR T ()~ DIk )+ KK ()s
— K = KOV + (K0 = DK ()(s~ 0% = &) + K )2 K0 [0 - 2]
with the convention that I'(s,t) = L for K(v)=0.

(log 5)*(log 1)?’
Also {k}(s),a < s < b} converges to G, in £>°([a,b]).

3 Proof of the results

It is based on the so-called Hungarian construction of Csorgé et al. (1986) [2]. For this define by
{Un(s),0 < s < 1}, the uniform empirical distribution function and {V,,(s), 0 < s < 1}, the uniform
empirical quantile function, based on the n > 1 first observations Uy, Us, ... sampled from a uniform
random variables on (0,1) and let {8,(s);0 < s <1} = {\/n(Un(s) —s),0 < s < 1}, be the corre-
sponding empirical process. One version of the Csorgd et al. (1986)[2] is the following

Theorem 2 (Csorgé et al. (1986)) There exists a probability space holding a sequence of indepen-
dant random variables Uy, Us, ... uniformly distributed on (0,1) and a sequence of Brownian bridges
{Bn(t),0 <t <1} ={Wy,(t) —tW,(1),0 <t <1} such that for any 0 <v <1/2 and d >0

u |Bn(3) — Bn(S)’ _ -
d/”SiSII)—d/n {s(1— 3)}1/2*1/ = Op( )-
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From this, we derive the Gaussian approximation of the following process {Upy,/s] ., — [k/5] , % <s<1}

in:
Lemma 1 On the Csdrgd et al. (1986) probability space we have

sup V(=

dm — 1) = Wa(1,5)] = 0,(1),
k/(n—1)<s<1 [k/] k/ ) ( ) p( )

where Wy (1, s) = s(£)=1/2W,,(k/(ns)) is a Wiener process.
Our proof is performed on the space of Theorem 2. For conciseness, we restrict ourselves to the case
~v > 0, since the other cases are proved similary.

We will just outline the proof. We begin by establishing that

\/E{Xn—[k/s}—l-l,n - F_l(l - Lﬁ)}
a(k/n)

(3.1) = —K(7)s5DW,(1,5) + 0,(s,a,b)

For this, we let
An(8) = Xn—kt1n = Xn—[k/s)+ 1,00 Bn(8) = Xp_jk/s)+1,n — Xn—[k/s?)+1,n and

2
an(s) = FH (1~ ) - P11 = By () = Pt - By ot - B

By using (2.1), we have
[k/s]/n
U[k/s] n) K() exp(/ tilb(t)dt).

Ulk/sln

Uc/s]) 1+ p(Up/s)n)

Xoiys4in/FH (1= = 1+ p([k/s]/n)

(e

We shall treat the three items one by one. Since (RC1) and (RC2) hold, by using Lemma 1 and by
the Mean Value Theorem, we arrive at

14 p(Up/s)n)
(3.2) \/E(W —1) =0,

in probability, uniformly in s € [a, b],

(3'3) \/>( k/s n)_K(’Y) —-1= _K(V)Wn(las)(l + Op(svaab)) = _K(’Y)Wn(lvs) +0P(3’a7 b)

"5
and
v%%WMWMMW““)1}=%®@®MML@+%@mW@+%@m®%

which is op(s, a, b), since sup,¢(g 1) [Wn(1,s)| is bounded in probability. Finally

VE{ X a0 - F0 - )}
a([k/s]/n)

where, for a(s) = F~1(1 — s), we used the result that a([k/s]/n)/a(k/n) tends uniformly in s~ %) for
€ (a,b). This achieves the proof of (3.1), thus we use it to prove Theorem 1. We put

= —K(’Y)Wn(l, 3) + Op(57 a, b)

Wa(2,8) = (3) 72 Wa(k/n), Wa(3,5) = s> (%) 2 W (s"%k/n).
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An(s)

This latter is a Gaussian process with covariance function min(s?,¢?). We denote now Cy(s) = % G

and ¢, (s) = Z:((j)) We will have

log Cp,(s) — log ¢, (s) = (sK(V) + 0p(a, s)) (Cn(s) — cn(s))

|

The same techniques leads to
an(s) = a([k/s]/n)(1 =5 KD)(1+0p(5,0)), An(s) = a(Up/an)(1 =5~ K0)) (14 0p(s, a))

We determine b, (s) and By,(s) in the same way and we conclude that

K(v)

(log(1/5)) ™" Vk {log Cp(s) — log ea(s)} = 10g(1/8)‘1m

(14 0p(s,a))

s {5 1) (Wa(L,5) + 0p(5,0)) + 55O (Wi (2,5) + 0,(5. @) — Wa(3,5) + 0y(s.)
Now by restraining ourselves to s € [a,b] C]0, 1[, we get uniformly in those s,
kin(5) = VE{Pu(s) —logca(s)/log(1/s)} = Gu(s) + 0p(s, a,b),

where

K(v)

Gals) = (s7K() —1)log s

{750 = DWa(L) + 5 KOW,(2.5) ~ W3, |

is a Gaussian process with covariance I'y,(s,t) — T'(s,t) expressed in Theorem 1. To extend our result
to k7 (s) we have to prove that under (RC1) and (RC2),

(3.4) VE(pn(s) = K(v)) = 0

In the Theorem 1, the asymptotic laws comes from that of 2Up g . All the remainder terms are
controlled uniformly by the regularity conditions. If we treat (3.4) the corresponding part %[k/s]/n
satisfies : \/E(%[k:/s]/n - (%)K(V)) — 0 uniformly in s € [a,b]. By respectively the same proofs, we
arrive at the result for v < 0, v > 0, v = 400, and this completes the proof. For further more details
see Fall, A. M. and Lo, G. S. (2011) [5].
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