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1 Introduction

Let X1, . . . , Xn be a sequence of independant random variables of distribution function F with F (1) =

0, and let X1,n < X2,n, . . . < Xn,n, denote the order statistics of X1, . . . , Xn for any fixed n ≥ 1. Let

k = k(n) be sequence of positive integers satisfying:

(K) k → +∞, k/n→ 0, and log log n/k → 0 as n→ +∞

We are concerned with this follow stochastic process

(1.1) Pn(s) = log(1/s)−1 log
Xn−k+1,n −Xn−[k/s]+1,n

Xn−[k/s]+1,n −Xn−[k/s2]+1,n
, for s2 ≥ k

n
.

If s2 < k
n , we put Pn(s) = 0. For s = 1/2, Pn(1/2) is the so-called Pickands estimator of the

extremal index γ when F is in the extremal domain of a Generalized Extreme Value Distribution

Gγ(x) = exp(−(1 + γx)
− 1
γ ), for 1 + γx > 0, with γ ∈ R.

This stochastic process has been studied by many authors: Alves (1995), Falk (1994), Pereira (1994),

Yun (2000 and 2002), Segers (2002) [8], etc. This latter gave a summarize of the previous works.

The handling of the Pickands process heavily depends that of the stochastic process of the large

quantiles
{
Xn−[k/s]+1,n, n ≥ 1

}
.

Drees (1995) [4] and de Haan and Ferreira (2006)[3] provided asymptotic uniform and Gaussian ap-

proximation of(1.1) when F is in the extremal domain under second order conditions. Segers (2002)[8]

used such results to construct new estimators of the extremal index with integrals of statistics on the

form of Pn(s). This motivates us to undertake a purely stochastic process approach of the Pickands

process in a simpler way but in a more adequate handling in order to derive from this study many

potentials applications.

2 Results

Let us introduce some notation. First define the generalized inverse of F : F−1(s) = inf {x, F (x) ≥ s},
0 < s < 1, and let

pn(s) = log(1/s)−1 log
F−1(1− [k/s]/n)− F−1(1− k/n)

F−1(1− [k/s2]/n)− F−1(1− [k/s]/n)
.

We are going to investigate this Pickands process
{
κn(s), kn < s2 < 1

}
=
{√

k(Pn(s)− pn(s)), kn < s2 < 1
}
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But it is easy to see that Pn(s) → K(γ) = γ1{γ 6=+∞} for F ∈ D(G1/γ). This extends the motivation

to the study of
{
κ∗n(s), kn < s2 < 1

}
=
{√

k(Pn(s)−K(γ)), kn < s2 < 1
}
.

Since our conditions depend on auxilliary functions of the representations of functions in the extremal

domain F ∈ D(G1/γ), γ < 0, γ > 0, γ = +∞. For the Frechet case γ > 0, we have

(2.1) F−1(1− u) = c(1 + p(u))u−K(γ) exp(

∫ 1

u
t−1b(t)dt).

where (p(u), b(u)) → (0, 0) quand u → 0, c is a positive constant The representations (2.1) is the

Karamata representation.

We fixe two numbers a and b, a < b, such that [a, b] ⊂]0, 1[. For each γ > 0, we will note a(u) =

F−1(1−u) and for γ < 0, a(u) = x0−F−1(1−u). Set ka2 = [a−2]k and λ > 1 a real number. Finally

we define for an arbitrary function h defined on (0, 1) in R,

hn(λ, h, a) = sup
0≤t≤λka2/n

|h(t)| .

We shall consider the regularity conditions

(RC1)
√
kpn(λ, p, a)→ 0

and

(RC2)
√
kbn(λ, b, a)→ 0.

All unspecified limits occur when n → ∞. Finally we denote op(s, a) et op(s, a, b) respectively the

uniform limits in s ∈ [0, 1] and s ∈ [a, b]. Here are our main results.

Theorem 1 Let F ∈ D(G1/γ), γ < 0, γ > 0, γ = +∞. Let 0 < a < b < 1. If (RC1) and (RC2) hold

then {κn(s), s ∈ [a, b]} converges to a Gaussian process {G(s), a < s < b} in `∞([a, b]), of covariance

function

Γ(s, t) =
1

(s−K(γ) − 1)(t−K(γ) − 1) log s log t
{(s−K(γ) − 1)[t(t−K(γ) − 1) + t−K(γ)K(γ)s

−K(γ)t2 −K(γ)2t2] + (t−K(γ) − 1)[K(γ)(s−K(γ)t− s2)] +K(γ)2t−K(γ)[s−K(γ) − s2]}

with the convention that Γ(s, t) = 1−s2
(log s)2(log t)2

, for K(γ) = 0.

Also {κ∗n(s), a < s < b} converges to G, in `∞([a, b]).

3 Proof of the results

It is based on the so-called Hungarian construction of Csörgő et al. (1986) [2]. For this define by

{Un(s), 0 ≤ s ≤ 1}, the uniform empirical distribution function and {Vn(s), 0 ≤ s ≤ 1}, the uniform

empirical quantile function, based on the n ≥ 1 first observations U1, U2, . . . sampled from a uniform

random variables on (0, 1) and let {βn(s); 0 ≤ s ≤ 1} = {
√
n(Un(s) − s), 0 ≤ s ≤ 1}, be the corre-

sponding empirical process. One version of the Csörgő et al. (1986)[2] is the following

Theorem 2 (Csörgő et al. (1986)) There exists a probability space holding a sequence of indepen-

dant random variables U1, U2, . . . uniformly distributed on (0, 1) and a sequence of Brownian bridges

{Bn(t), 0 ≤ t ≤ 1} = {Wn(t)− tWn(1), 0 ≤ t ≤ 1} such that for any 0 < ν < 1/2 and d ≥ 0

sup
d/n≤s≤1−d/n

|βn(s)−Bn(s)|
{s(1− s)}1/2−ν

= Op(n
−ν).
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From this, we derive the Gaussian approximation of the following process {U[k/s],n −
[k/s]
n , kn ≤ s ≤ 1}

in:

Lemma 1 On the Csörgő et al. (1986) probability space we have

sup
k/(n−1)≤s≤1

∣∣∣∣√k(
n

[k/s]
U[k/s],n − 1)−Wn(1, s)

∣∣∣∣ = Op(1),

where Wn(1, s) = s( kn)−1/2Wn(k/(ns)) is a Wiener process.

Our proof is performed on the space of Theorem 2. For conciseness, we restrict ourselves to the case

γ > 0, since the other cases are proved similary.

We will just outline the proof. We begin by establishing that

(3.1)

√
k
{
Xn−[k/s]+1,n − F−1(1−

[k/s]
n )
}

a(k/n)
= −K(γ)sK(γ)Wn(1, s) + op(s, a, b)

For this, we let

An(s) = Xn−k+1,n −Xn−[k/s]+1,n, Bn(s) = Xn−[k/s]+1,n −Xn−[k/s2]+1,n and

an(s) = F−1(1− k
n)− F−1(1− [k/s]

n ), bn(s) = F−1(1− [k/s]
n )− F−1(1− [k/s2]

n ).

By using (2.1), we have

Xn−[k/s]+1,n/F
−1(1− [k/s]

n
) =

1 + p(U[k/s],n)

1 + p([k/s]/n)
(
n

[k/s]
U[k/s],n)−K(γ) exp(

∫ [k/s]/n

U[k/s],n

t−1b(t)dt).

We shall treat the three items one by one. Since (RC1) and (RC2) hold, by using Lemma 1 and by

the Mean Value Theorem, we arrive at

(3.2)
√
k(

1 + p(U[k/s],n)

1 + p([k/s]/n)
− 1)→ 0,

in probability, uniformly in s ∈ [a, b],

(3.3)
√
k(

n

[k/s]
U[k/s],n)−K(γ) − 1 = −K(γ)Wn(1, s)(1 + op(s, a, b)) = −K(γ)Wn(1, s) + op(s, a, b)

and

√
k

{
(
n

[k/s]
U[k/s],n)bn(λ,b,a) − 1

}
= bn(λ, b, a)(Wn(1, s) + op(s, a, b))(1 + op(s, a, b)),

which is op(s, a, b), since sups∈(0,1) |Wn(1, s)| is bounded in probability. Finally

√
k
{
Xn−[k/s]+1,n − F−1(1−

[k/s]
n )
}

a([k/s]/n)
= −K(γ)Wn(1, s) + op(s, a, b)

where, for a(s) = F−1(1− s), we used the result that a([k/s]/n)/a(k/n) tends uniformly in s−K(γ) for

s ∈ (a, b). This achieves the proof of (3.1), thus we use it to prove Theorem 1. We put

Wn(2, s) = ( kn)−1/2Wn(k/n), Wn(3, s) = s2( kn)−1/2Wn(s−2k/n).
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This latter is a Gaussian process with covariance function min(s2, t2). We denote now Cn(s) = An(s)
Bn(s)

and cn(s) = an(s)
bn(s)

. We will have

logCn(s)− log cn(s) = (sK(γ) + op(a, s)) (Cn(s)− cn(s))

The same techniques leads to

an(s) = a([k/s]/n))(1− s−K(γ))(1 + op(s, a)), An(s) = a(U[k/s],n)(1− s−K(γ))(1 + op(s, a))

We determine bn(s) and Bn(s) in the same way and we conclude that

(log(1/s))−1
√
k {logCn(s)− log cn(s)} = log(1/s)−1

K(γ)

(1− s−K(γ))
(1 + op(s, a))

×
{

(s−K(γ) − 1)(Wn(1, s) + op(s, a)) + s−K(γ)(Wn(2, s) + op(s, a))−Wn(3, s) + op(s, a)
}
.

Now by restraining ourselves to s ∈ [a, b] ⊂]0, 1[, we get uniformly in those s,

κn(s) =
√
k {Pn(s)− log cn(s)/ log(1/s)} = Gn(s) + op(s, a, b),

where

Gn(s) =
K(γ)

(s−K(γ) − 1) log s

{
(s−K(γ) − 1)(Wn(1, s) + s−K(γ)Wn(2, s)−Wn(3, s)

}
is a Gaussian process with covariance Γn(s, t)→ Γ(s, t) expressed in Theorem 1. To extend our result

to κ∗n(s) we have to prove that under (RC1) and (RC2),

(3.4)
√
k(pn(s)−K(γ))→ 0

In the Theorem 1, the asymptotic laws comes from that of n
kU[k/s],n. All the remainder terms are

controlled uniformly by the regularity conditions. If we treat (3.4) the corresponding part n
k [k/s]/n

satisfies :
√
k(nk [k/s]/n − (1s )K(γ)) → 0 uniformly in s ∈ [a, b]. By respectively the same proofs, we

arrive at the result for γ < 0, γ > 0, γ = +∞, and this completes the proof. For further more details
see Fall, A. M. and Lo, G. S. (2011) [5].
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