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1. Introduction 

Fisher (1936) proposes Fisher’s linear discriminant function (LDF), and opens the new world of  
discriminant analysis. It is very essential methodology in industry and science.  It is approached from 
various research areas such as statistics, pattern recognition and mathematical programming (MP). 
1) In 1930s, Fisher introduces LDF under the assumption that distributions of two classes are same 

variance-covariance matrices of normal distribution (Fisher’s assumption). After his theory, many 
discriminant methods are developed such as quadratic discriminant function (QDF), Mahalanobis 
distance for multi-group discrimination, and MT (Mahalanobis - Taguchi) theory in quality control, 
logistic regression etc. 

2) In the 1950s, Pattern Recognition starts to identify the character.  
3) Since the 1970s, there are many papers in regression and discriminant analysis using MP. Stam (1997) 

seriously asks us "Why have statisticians rarely used Lp-norm method". This answer is very easy, 
because these researches are not evaluated by real data. 

4) Vapnik (1995) proposes fantastic methods named support vector machine (SVM), such as hard margin 
SVM, soft margin SVM, kernel SVM. These methods are evaluated by real data in many areas. Hard 
margin SVM propose new idea such as maximization of margin. It ascertains the generalization ability as 
same as the examination by the evaluation data in statistics. 

5) After 1997, Shinmura (1998, 2000, 2004, 2007, 2009) and Shinmura & Tarumi(1999) develop several 

new linear discriminant functions based on minimum number of misclassifications (MNM) criterion 
(Shinmura & Miyake, 1979) named the optimal linear discriminant function (OLDF).  
There are several problems about the discriminant analysis. IP-OLDF resolves these problems. And it is 

concluded that Revised IPLP-OLDF and Revised IP-OLDF are superior to LDF, QDF, logistic regression, 
hard margin SVM and soft margin SVM by many experimental studies. 
 

2.  Problems of Discriminant Analysis 
   There are six problems about discriminant analysis. 

1) It is very strange that number of misclassifications (NM) has been neglected by evaluation of 
discrimination. NM of LDF and QDF are regressed by MNM, and these results reveal that QDF is very 
weak for multicollinearity (Shinmura, 1998).  

2) Nobody explains how to treat the cases on discriminant hyper-plane that are indefinite in class1/class2. If 
we can’t count NM correctly, we can’t evaluate the results of discrimination. 
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3) The linear discriminant functions defined by MP have special features. Some cases are fixed on the 

discriminant hyper-plane or support vector (SV). This feature causes trouble to count NM correctly  
except for hard margin SVM and Revised IP-OLDF.  

4) Most of data doesn’t satisfy Fisher’s assumption. Therefore, QDF, logistic regression and QT are 
developed. It is unfortunately there is no approach by MNM criterion. 

5) Influence statistics is very important in statistics. But there are no 95% significant intervals of NM and 

discriminant coefficients. Therefore, there is no reason why discriminant methods must satisfy Fisher’s 
assumption. 

6) Discriminant methods except for Revised IP-OLDF and hard margin SVM can’t find the minimum 
dimension of linear separable data space (MNM=0). 
Above problems are completely resolved by OLDF using LINGO that is MP solver developed by  

Schrage (2006).  
 

3．New methods 

After 1997, several new methods are developed. Important methods are IP-OLDF by integer 
programming (IP), LP-OLDF by linear programming (LP), Revised IP-OLDF and Revised IPLP-OLDF.  

3.1 IP-OLDF 
IP-OLDF minimizes NM in formula (3.1). If xi  is classified correctly, ei=0 and yi *f i(b)=

 yi *(xi’b+1)>=0. If xi is misclassified, ei =1 and yi *fi(b)>= -1000000. This means that IP-OLDF 
choose the discriminant hyper-plane fi(b)=0 for classified cases, and fi(b)= -1000000 for 
misclassified cases by 0/1 decision variable.  

MIN = Σ ei 

yi *(xi’b+1) >= - M*ei           (3.1) 
 xi =(xi1，xi2，…，xip) : p-independent variables, i=1,…,n 
 yi = 1 for xi ∈class1, yi = -1 for xi  ∈class2,  b : p-discriminant coefficients 
 ei : 0/1 decision variable corresponding to each xi , M: 1000,000 (Big M constant) 
But, this notation has weakness. We must solve formula (3.2), because we can’t decide yi =1 for class1 

and yi = -1 for class2. Only data decides it. Therefore, both models must be solved. 
MIN=Σei 

yi *(xi’b - 1) >= - c*ei           (3.2) 
   The constant of fi (b) is fixed to +1(/-1). This is very important, because we can exchange xi and b such 
as xi’b+1=b’xi+1. We can consider IP-OLDF on both p-dimensional data space (b’xi+1) and discriminant 
coefficient space (xi’b+1). 

fi(b) = 0 becomes a linear hyper-plane that divides p-dimensional discriminant coefficients space 
into two subspaces. The dicriminant coefficients space are divided in finite convex polyhedron by n 

linear hyper-planes of case xi. Every interior point b of one of this convex polyhedron 
discriminate some cases correctly, and misclassify the other. If yi* fi(b) = yi*(xi’ b +1) = yi*(b’ 
xi +1) > 0, xi is discriminated correctly in data space. If yi* fi(b) = yi*(xi’ b +1) = yi*(b’ xi +1) <
 0, xi is discriminated incorrectly in data space. The vertex of convex polyhedron consists of over 
p-cases. These cases are on the discriminant hyper-plane in data space. 
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Therefore, interior point of convex polyhedron discriminates same cases correctly/incorrectly.  
Every interior point has unique NM. And there is at least one Optimal Convex Polyhedron with 
MNM. If we choose the linear discriminant function corresponding to the interior point, there is no 

cases on the discriminant hyper-plane, because fi(b) ≠ 0. This resolves one of the serious problems. 
On the other hand, IP-OLDF finds the solution on the vertex of Optimal Convex Polyhedron  

and p cases lie on the discriminant hyper-plane in the data space if data satisfies Haar’s condition. 
And (p+1) cases lies on the hyper-plane if data doesn’t satisfy Haar’s condition. In this case, MNM 
of IP-OLDF may not be true MNM. Some ei on the discriminant hyper-plane may be 1, nevertheless 
all ones on it are counted to zero. 

3.2 Revised IP-OLDF 
Revise IP-OLDF in formula (3.3) resolves two defects of IP-OLDF, because it finds the interior points 

of Optimal Convex Polyhedron directly. The misclassified cases are attracted to (xi’b+b0) = - 999999 and 
discriminant scores (xi’b+b0) are less than equal -1. No cases are on (xi’b+b0) =0. This means the solution is 
an interior point of Optimal Convex Polyhedron defined by IP-OLDF. 

MIN = Σ ei 

yi *(xi’b+b0) >= 1 - M*ei           (3.3) 
 b0 : free decision variables 

3.3 Revised LP-OLDF 
If ei is changed from 0/1 decision variable to non-negative real value in (3.3), Revised LP-OLDF is  

defined. Revised LP-OLDF minimizes the summation of distances of misclassified cases from the 
discriminant hyper-plane. Revised LP-OLDF is faster than Revised IP-OLDF, because it is solved by LP.  

3.4  Revised IPLP-OLDF 
Revised IP-OLDF has the defect that it needs enormous calculation time, especially for 100 

fold cross-validations by 135 different discriminat models. Therefore, faster algorithm named 
Revised IPLP-OLDF combined with Revised IP-OLDF and Revised LP-OLDF is developed.  

In first step, Revised LP-OLDF is applied for the sample data. If ei is zero, xi is classified correctly 
by SV. And these cases are excluded from the optimization by fixing ei to zero in second step. 

In second step, Revised IP-OLDF is applied for the misclassified cases in first step. Therefore,  
computation of Revised IP-OLDF is restricted for sub cases. This is reason why Revised IPLP-OLDF is 
faster than Revised IP-OLDF. It finds the approximation of MNM.  
    The 95% significant intervals of NM and discriminant coefficients of Revised IPLP-OLDF are 
obtained by 100 fold cross validations. 
 
4.  Solving Problems of Discriminant Analysis 
     New knowledge is obtained by IP-OLDF. Revised IP-OLDF obtains true MNM. . 

4.1 Monotonous decrease of MNM 
     MNM has a remarkable feature such as MNMk >= MNM(k+1). This means that MNMk of  
Revised IP-OLDF having k-independent variables is greater than MNM(k+1)  of Revised IP-OLDF 
added one variable to the former.  

If MNMk =0, then MNM(k+1) =0. This feature reveals that only Revised IP-OLDF and hard 
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margin SVM can find the minimum dimension of independent variables space that is linear  
separable. Other discriminant functions can’t always find it. Until now, most statisticians believe the 
discrimination for linear separable data is easy, nevertheless LDF, QDF and logistic regression have 
different troubles for it. One of troubles is that stepwise methods, AIC and Cp statistics can’t work 
correctly for linear separable data. Swiss bank note data collected by Flury and Rieduyl (1988) is a 
famous data for discrimination. There are 100 genuine and 100 counterfeit bills having six  
measurements. Revised IP-OLDF reveals that this data is linear separable in two dimensions (X4, 
X9) by the examination of all possible models. On the other hand, AIC and stepwise methods  
choose 5-independent variables, and Cp statistics choose 6-independent variables. In addition to these 
facts, NMs of these methods are not zero. This fact is confirmed by the modified student and CPD 
data. From these two kinds of data, linear separable data are generated by expanding the range of  
average of two classes. The same results are observed as same as Swiss bank data (Shinmura,2007). 

4.2 Fisher’s assumption and Inferential Statistics 
    LDF assumes Fisher’s assumption. Many statisticians and statistical users doubt this one.  

Therefore, QDF and logistic regression are developed. And there are many researches in the fields 
of pattern recognition and MP. Nevertheless LDF assume Fisher’s assumption, confidence intervals 

/ standard errors of NM and the discriminant coefficients are not known. LDF is irrelevant from  
inferential statistics. There is no need to assume that the two classes are normally distributed. 
    Revised IPLP-OLDF can compute confidence intervals by 100 fold cross validation. 
 

5.  Experimental Study 
In this study, four kinds of raw data are used for evaluation. In first stage, these data are used to  

examine the validity of new methods. These methods are compared with LDF, QDF, decision tree  
and logistic regression. In second stage, 20,000 resampling data sets are generated from raw data 
by Speakeasy. Raw data are used as training sample, and resampling data are used as evaluation 
data. NM by Revised IPLP-OLDF equal to MNM by 149 different discriminant models (Shinmura, 
2009). In third stage, 100 resampling data sets having same size of raw data are generated from 
raw data. And 135 different discriminant models of LDF, logistic regression and Revised IPLP- 
OLDF is evaluated by 100 fold cross-validation.    
5.1 Four kinds of Real data 

Student data consists of 40 students having five independent variables. Object variable consists of two 
groups such as 25 students who pass the examination and 15 students who don’t pass. All combinations of 
independent variables (31= 25-1) are investigated.  
    Iris data (Edgar,1935) consists of 100 cases having four independent variables. Object variable consists 
of two species such as 50 versicolor and 50 virginica. All combinations of independent variables (15= 24-1) 
are investigated.    

CPD data (Shinmura & Miyake, 1979) consists of 240 patients having 19 independent variables. Object 
variable consists of two groups such as 180 pregnant women whose babies are born by the natural delivery 
and 60 pregnant women whose babies are born by Caesarian operation. Forty models selected by forward 
and backward stepwise methods are analyzed, because we can’t examine (219-1) models by all 
combinations of independent variables. There are three multicollinearities in this data.  

Swiss bank notes data (Flury & Rieduyl, 1988) consists of 200 cases having six independent variables. 
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Object variable consists of two kinds of bills such as 100 genuine and 100 counterfeit bills. Sixty three  
(= 26-1) models are investigated.   
    Therefore, there are 149 different models for experimental sturdy. 

Two different types of resampling data are generated by Speakeasy．In second stage, four  
resampling data sets having 20,000 cases are generated from raw data. These data sets are used by  
the evaluation data. In third stage, 100 data sets having the same size of raw data sets are generated.
Those are used as 100 fold cross-validations. 

5.2 Results in first stage (1997-2006) 
     Results in first stage are summarized in Shinmura (2007). 
5.3 Results in second stage (2007-2009) 

Revised IP-OLDF can finds MNM of training data, but it requires large computation (CPU) time. 
Therefore, if Revised IPLP-OLDF gives us good approximations of MNM, it is used instead of 
Revised IP-OLDF. In order to confirm this, four resampling data sets having 20,000 cases are 
generated from raw data by Speakeasy. Raw data are used as training data, and resampling data 
sets are used as evaluation data. Revised IPLP-OLDF is compared with Revised IP-OLDF in 149 
different discriminant models. Our second concern is how Revised IPLP-OLDF reduces CPU time 
compared to Revised IP-OLDF. The following results are obtained (Shinmura, 2009). 
1) Revised IPLP-OLDF significantly improves CPU time.  
2) In the training data, all 149- NM of Revised IPLP-OLDF equal to the MNM of Revised IP-OLDF.  
3) In the evaluation data, most of NM of Revised IPLP-OLDF equal to NM of Revised IP-OLDF.  
4) The generalization abilities of both methods are concluded to be high, because the difference between the 
error rates of training and evaluation data are almost within 2%.  

Therefore, it is concluded that Revised IPLP-OLDF is useful to analyze experimental sturdy of 
100 fold cross-validation in third stage on behalf of Revised IP-OLDF. 
5.4 Results in third stage (2010) 

One hundred resampling data sets are generated by uniform random numbers. These data sets 
have the same size (cases and variables) of raw data. One hundred thirty five different discriminant
models of LDF, logistic regression and Revised IPLP-OLDF are done by 100 fold cross-validations. 
Fourteen models are dropped from CPD data. There are 100-NM and discriminant functions for 135
different discriminant models. One hundred thirty five mean error rates, and 95% confidence 
intervals of error rates and discriminant coefficients are calculated.  

Mean error rates of Revised IPLP-OLDF are compared with LDF.  All results of LDF are bad 
for the training samples. We obtain same results about CPD data for the evaluation samples. Only  
15 (2 in Iris, 10 in Bank, 3 in student data) out of 109 models of LDF are good for the 
evaluation samples.  

Mean error rates of Revised IPLP-OLDF are compared with logistic regression.  Only 2 out of 
15 models of logistic regression are good for iris data in evaluation data. Only 24 out of 63  
models of logistic regression are good for Bank data in evaluation data. Only 3 and 7 out of 63  
models of logistic regression are good for student data in training and evaluation data respectively. 
Other results of logistic regressions are bad. 
 

6. Conclusion 
IP-OLDF based on MNM criterion finds new knowledge about discriminant analysis. Optimal 
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Convex Polyhedron reveals the relation of NM and discriminant coefficients. MNM finds the defects
of model selections in Swiss Bank note data. It reveals the difficult problems about discrimination  
of the linear separable data. LDF, QDF and logistic regression can’t find the minimum dimension of
discriminant coefficients space. Model selections by LDF choose higher dimension. QDF is very we
ak for CPD data having multicollinearities. It frequently misclassifies the one group to the other.  
Estimations of logistic regression coefficients become unstable for the linear separable data. On the 
other hands, IP-OLDF may not find true MNM if the data doesn’t satisfy Haar’s condition.  
Therefore, Revised IP-OLDF is proposed. It can find the interior points of Optimal Convex  
Polyhedron directly, and avoids cases on the discriminant hyper-plane.  

At last, NM of Revised IPLP-OLDF are compared with those of LDF and logistic regression 
by 100 fold cross-validations. The mean error rates of LDF are better than Revised IPLP-OLDF 
in only 15 out of 135 different discriminant models for evaluation samples. The mean error rates of 
logistic regressions are better than Revised IPLP-OLDF in only 3 out of 135 models for training 
samples and 33 out of 135 models for evaluation samples.  

It is concluded that MNM criterion is robust, and Revised IP-OLDF gives the lower limit 
of NM of all linear discriminant functions such as LDF, hard margin SVM and soft margin SVM. 
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