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I. Introduction 

 

From a practical view, the primary aims of any economic time series analysis would be to provide an 
insight into the short term probabilistic features of the possible underlying model on base of constantly 
updated sample path of a moderate length. On base of such a generally imprecise knowledge are made 
various economic decisions or predictions. We mean here for example evaluation of a portfolio of securities, 
options for sale of purchased shares management.  

In practice main tools for time series analysis and model identification are mean, autocovariance, 
partial autocovariance or cross-correlation functions. They are extremely sensible to various kinds of outliers 
that may occur in time series. Their estimates critically depends on stationarity, ergodicity of the underlying 
model. Several authors stress that observed time series almost always consist of atypical observations (see 
(Pena (1990) or Maronna et all (2006)). These atypical points can be produced by nonsystematic changes in 
the variables that are driving the series or affecting them. Since the forecast from any time series model are 
based on the extrapolation of the historical patterns, if the parameters of the model are very dependent on a 
few atypical observations resulting from isolated or nonrepeatable events, then the quality of the forecasts 
can be expected to be poor. Moreover, when these parameters have or economic interpretations, the presence 
of undetected influential observations can lead the economist to wrong decisions.  

In this paper we study certain properties of the generalized Tukey depth (location, location-scale, 
regression depths) induced procedures and look into the probabilistic information of the underlying time 
series model carried by the procedures. We focus our attention on short term multivariate quantile based 
description of the possible time series model. We give several examples of easy and user friendly depth 
induced statistical procedures for robust short term economic decision making.  
  
 

II. Data Depth Procedures    

 

Statistical depth functions originated with the notion of halfspace depth which has became much studied 
as a tool in nonparametric multivariate location inference. Tukey and Donoho and Gasko (see Zuo and 

Serfling (2000)) defined the halfspace depth of a point dx  with respect to an empirical distribution nP  

on d  based on data 1{ ,..., }ny y  as the smallest proportion of data points in any closed halfspace with x on 

the boundary. In detail let u be a vector on unit sphere 1dS  of d then the Tukey depth of a point x can be 
written as  
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where nP  is the empirical distribution based on data 1 2{ , ,..., }ny y y , #{}denotes the number of data 

points in {} , and { : 0}THu x u x is the closed halfspace containing 0 on its boundary with u pointing 

inside the halfspace and orthogonal to the boundary. 
The Tukey depth is independent of the coordinate system, that is it is affine invariant. The point(s) with 

the maximum Tukey depth provides a measure of centrality known as Tukey median. For (0,1)p , the p-th 

Tukey depth contour ( )D p is the collection of dx such that ( )d px ; it means

( ) : ( )dD p d px x . Contours (some authors use term central regions) form a sequence of nested 

convex sets (for details see Rousseeuw and Struyf (1999) or Zuo and Serfling (2000)). One useful 
application of the contours is to provide a nonparametric description of the dispersion of distribution using 
the volumes of the enclosed regions. An example concerning a relation between inflation and unemployment 
rate in Poland is presented on Figure 1 and Figure 2. Struyf and Rousseeuw (1999) proved that the Tukey 
depth completely determines empirical distributions by actually reconstructing the data points from the depth 
contours. Also Kong and Zuo (2010) studied properties of the Tukey depth contours and looked into the 
probabilistic interpretation carried by the contours and show that any distribution with smooth depth 
contours is completely described by its Tukey depth.  

Innovative extension of the Tukey depth to univariate multiple regression was proposed by Rousseeuw 
and Hubert (1999). Mizera (2002) encompases notion of halfspace depth and regression depth within a 
general framework “tangent depth” defined with respect to “gradient probability fields” and equipped with 
differential calculus. His definition of the depth in general models is motivated by theoretical considerations 
with a decision – theoretic flavor. General halfspace depth can be defined as a measure of data – analytic 
admissibility – the simplest version of this principle defines depth of a parameter  as the proportion of the 
data points whose omission causes  to become a nonfit, a fit that can be uniformly dominated by another 
one. Mizera and Muller (2004) apply the “tangent depth” to the classical univariate location–scale problem 
through a “location – scale” depth defined on a bivariate parameter space. Mizera and Muller introduced not 
one but a family of depths depending on the choice of the underlying density  . In a context of robust short-
term analysis of relations between the mean and the dispersion of the economic time series their Student – 
depth seems to be especially interesting.   

The Student depth of ( , ) [0, )with respect to a probability measure P  on  is defined      

(2)                   
1 2

2 2
1 2

( , ) 0
( , , ) inf : ( ) (( ) ) 0

Tu u
d P P y u y u y , 

the Student depth with respect to the data 1,..., ny y  is obtained by applying the definition to the empirical 
probability measure nP  supported by the data points. 
The location  of the Student median lies relatively close to the sample median – in particular for data 

exhibiting symmetry. For asymmetric unimodal distributions, we may observe that the Student median 
location  shrinks from the sample median toward the mode. We observed also that the student median 

scale is usually shrunk down from the MAD. Results presented in Mizera (2002) imply for the Student 
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depth that breakdown point of the Student median is not less than 3n . This means considerable 

robustness. We can say that the Student depth plots indicate asymmetry including that present in the core of 
the data rather than just in the tails, but they are capable of detecting heavy–tailed behavior too. 
 
 

 
 
 

III. Propositions 

 

Depth–based statistical methods are providing short term multivariate quantile based description of the 
possible time series model. Although such the description is rather imprecise but very often gives us a base 
for a decision making. Data depth concept offers a variety of easy and user – friendly analytic tools for a 
preliminary analysis of time series and economic decision making. We mean here in particular: 

A. We can use moving multidimensional median as an alternative to one-dimensional moving mean or 

median filter. In a contrary to the mean and the median, the multidimensional median takes into 

account multidimensional geometry of the data and hence the natural dependence of points in time 

series analysis. We advocate here using a moving projection median which has very good properties 

in the context of a balance between robustness and efficiency (for details see Zuo (2003)). In case of 

linear autoregression estimation we strongly recommend using maximum regression depth estimator 

(Maxdepth) instead of least squares, maximum likelihood based methods. We underline here 

relatively high breakdown (BP) point of Maxdepth estimator but also relatively small sensitivity of 

the maximum depth estimator for a data subset – for a majority of the data (see Visek (2002)). Using 

the autoregression estimator with relatively high BP we protect our analysis against an effect of 

propagation of an outlier.    

Fig. 1: Tukey depth contour plot – 

inflation vs. unemployment in Poland. 

Fig. 2: Linear regression fits – inflation 

vs. unemployment in Poland 

 

Source: Own calculations, data GUS Source: Own calculations, data GUS 
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B. We can use simple Depth vs. Depth plot (see Liu et all (1999)) for a preliminary analysis of 
stationarity of multidimensional time series. We calculate sample depths of points assuming say first 
25% and last 25% points of the considered time series. Next we compare calculated depths for each 
point using scatter plot. Departures from diagonal line of the scatter plot should inform us about 
differences of the probability distribution generating time series. Figure 3 presents four depth vs. 
depth plots prepared on base of two-dimensional time series of the monthly log returns of IBM stock 
and the S&P 500 index from January 1926 to December 1999 with 888 observations (see Tsay 
(2010)). We divided series into four approximately equal size parts following each another. We can 
notice a significant differences between first and second and first and fourth period.  

   

   

 

C. In order to indicate a model generating time series it is useful to analyze a behavior of a moving 
Student median or the Student median calculated for short following each another periods. Scatter 
diagrams of the location and the scale coordinates of the Student medians could be very helpful tools 
for an investigation of relations between the mean and the dispersion of the underlying process 
generating series. We recommend this tool for a preliminary discrimination between simple 
GARCH, SV and ARMA models in cases of the samples of a short or moderate length consisting 
outliers. Figure 5 presents 10-minute FX log returns of Mark-Dollars exchange rate. Figure 6 
presents the locations and the scales for Student medians calculated on base of 6-hours periods 
following one another subtracted from the original series (30 observations for each median 
calculation). Figure 7 presents scatter diagram of the Student median scale in the period t versus the 
Student median scale in the preceding period (t-1) with maximal regression fit represented by red 
line. Figure 8 presents scatter diagram of the Student median location in the period t versus Student 
median scale in the preceding period (t-1) with maximal regression fit represented by red line. Figure 
7 and Figure 8 together focus our further attention on MGARCH (GARCH in mean) class of models 
generating the considered time series.  

Fig. 3: Tukey depth contour plot – 

inflation vs. unemployment in Poland. 

Fig. 4: Tukey depth contour plot – 

inflation vs. unemployment in Poland. 

Depth vs. Depth plot Depth vs. Depth plot 

Depth vs. Depth plot Depth vs. Depth plot 

Monthly log returns of IBM stock 

Monthly log returns of S&P500 index 

Source: Own calculations, data Tsay (2010) Source: Own calculations, data Tsay (2010) 
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D. In a context of the autocorrelation coefficient estimation we recommend using slope calculated by 
means of maximal regression depth method adjusted by means of median of absolute deviation from 
the median. For autocorrelation of a moderate order we avoid an effect of propagation of an outlier.    
 

  

 

 

 

 

 

 

 

IV.  Conclusions 

In the short term forecasting a behavior of an economic system the goal is to predict future values of a 
time series based on the data collected to the present. Very often time series contain influential outliers 

Fig. 5: DM/USD 10-min log returns. Fig. 6: 6 – hours moving Student median.   

10-min log return 6-hours Student location 

6-hours Student scale 

Source: Own calculations, data Tsay (2010) Source: Own calculations, data Tsay (2010) 

Fig. 7: Student median scale in the 

period t vs. Student median scale in the 

period (t-1). 

Fig. 8: Student median location in the 

period t vs. Student median scale in the 

period (t-1). 

 

Source: Own calculations, data Tsay (2010) Source: Own calculations, data Tsay (2010) 
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misleading the economist about the properties of the considered process. In these situations data depth based 
exploratory techniques could provide us sufficient basis for the decision making. The Location – scale depth 
proposed by Mizera & Muller (2003) seems to be especially worth further studies in the context of a robust 
time series analysis.  
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