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Introduction

The vertex nomination problem addressed in this paper, introduced in Coppersmith and Priebe
[2011] and illustrated in Figure 1, involves a (simple, undirected) graph in which vertices have asso-
ciated attributes (“1” and “2”, say; black and white in the figure). However, we observe the vertex
attributes for only a (small) subset of the vertices. One of the vertex attributes identifies vertices
of particular interest (“1”, say; black in the figure), and we wish to nominate from the collection of
vertices with unobserved attribute (the candidate set; gray in the figure) for further investigation.
For example, we might nominate the candidate vertices which connect to the most known vertices of
interest, or those with connectivity pattern most similar to that of the known vertices of interest.

Previous work in inferring a small region of inhomogeneity can be found in Priebe et al. [2005],
Pao et al. [2010], Priebe et al. [2010] and Grothendieck et al. [2010]. These consider unattributed
graphs, as well as edge-attributed graphs, and the inference involves determination of whether there
exists a small collection of vertices connecting at a higher rate (and, in the case of edge-attributed
graphs, with a distinguished edge-attribute distribution) than the majority of vertices. In effect,
these manuscripts are concerned with the question of detection: is there a collection of anomalous
vertices? In this paper we consider the related problem in which we have both vertex attributes and

Figure 1: Illustration of the vertex nomination problem: given a graph with a few observed vertex
attributes (black and white vertices), we wish to nominate from the candidate set (gray vertices)
vertices which are likely to be of particular interest (those with unobserved vertex attribute being
truly black, say).
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edge attributes (e.g., topics extracted from the content of communication), and we observe the vertex
attribute for only some of the vertices. We wish to use this edge and vertex attribute information to
nominate other vertices for investigation.

Framework

A graph is a pair G = (V,E) of vertices V = {1, . . . , n} and edges E ⊂ V (2), where V (2) denotes
the set of unordered pairs of vertices. Let A denote the adjacency matrix for G, and let deg(v)
denote the degree of vertex v. We define an attributed graph Ga = (V,Ea, ϕV , ϕE) as follows. Let
ΦV = {1, . . . ,KV } and ΦE = {0, 1, . . . ,KE}, and consider vertex attribution function ϕV : V → ΦV

and edge attribution function ϕE : V (2) → ΦE . These functions attribute each vertex (resp. edge) of
Ga with an element of ΦV (resp. ΦE). The edge set Ea for Ga is given by Ea = {vw : ϕ(vw) > 0}; we
write v ∼ w to mean that vw ∈ E or Ea. For simplicity, we will assume that KE = KV = 2, so that
there are two distinguished attributes for each of the vertices and edges.

For the vertex nomination problem, we write M = {v : ϕV (v) = 1}; this is the collection of
vertices of particular interest. We observe not Ga = (V,Ea, ϕV , ϕE) but Go = (V,Ea, ϕ′V , ϕE), where
ϕ′V : V → ΦV ∪ {0} and ϕ′V (v) = ϕV (v) = 1 for v ∈ M′ ⊂ M and ϕ′V (v) = 0 for v ∈ V \M′. Thus
we observe a subset M′ of cardinality m′ = |M′| of the vertices of particular interest, and we wish to
infer others – we wish to nominate vertices from V \M′ which are, we hope, in M\M′.

Numerous generalization opportunities are apparent, but this formulation provides a simple
framework for an initial investigation of the vertex nomination problem.

Methods

Random dot product graph (RDPG) models are discussed in Young and Scheinerman [2007],
Marchette and Priebe [2008], Scheinerman and Tucker [2010] and are a special case of the latent
position models of Hoff et al. [2002]. These latent position models posit a “social space” associated
with the vertices, where the relative positions in this social space determine the relationship (edge)
probabilities. We will first give the basic definitions, then discuss estimation in the model.

The basic idea is that each vertex v has associated with it a vector xv ∈ Rd, and these vectors
determine the edge probabilities of the random graph via

P [v ∼ w] = xT
v xw.

(Obviously, the vectors must satisfy 0 ≤ xT
v xw ≤ 1.) We denote by X the n× d matrix whose vth row

corresponds to xv.
Given a graph G = (V,E) and a target dimensionality d for the latent vectors, we can fit an

RDPG model using the iterative approach described in Scheinerman and Tucker [2010]. Alternatively,
we can obtain an estimate X̂ in a single step as follows:

1. Let Ã = A + D, where D = deg(v)/(n − 1) is the diagonal matrix with the normalized vertex
degrees on the diagonal.

2. Compute the eigenvectors U and eigenvalues Λ of Ã, and set all negative entries in Λ to zero.

3. X̂ = U1,...,d

√
Λ1,...,d.

This yields X̂ = arg minX ||Ã −XTX||F . Imputing the diagonal of Ã allows for a one-step solution,
in contrast with the algorithm proposed in Scheinerman and Tucker [2010]. The justification for the
choice deg(v)/(n− 1) is based on the observation that E[deg(v)] =

∑
w 6=v x

T
v xw; if all the vectors are

the same (xw = xv∀w) then E[deg(v)] = (n − 1)xT
v xv. Under the assumption that the latent vectors
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are random variables and are independent and identically distributed, E[deg(v)] ≤ (n − 1)E[XT
v Xv]

by Cauchy-Schwarz.
We extend the RDPG model to allow for edge attributes in a very natural way. The idea is to

posit that the edge existence and edge attributes are fundamentally tied. Intuitively, we are modeling
the edges as if they were communications, with the attributes corresponding to topics, and the vectors
in the RDPG model encoding the interest level of each individual in each of the topics.

Let us consider the case where we allocate one dimension per edge attribute. Since ΦE =
{0, 1, · · · ,K}, we define X to be an n ×K matrix where each row xv statisfies xvk ≥ 0 for all k and∑

k xvk ≤ 1. (This is sufficient, but not necessary, to guarantee that the vectors satisfy 0 ≤ xT
v xw ≤ 1.)

Then the attributed RDPG model ARDPG(X) is given by

P [v ∼ w] = xT
v xw and P [ϕE(vw) = k|v ∼ w] =

xvkxwk

xT
v xw

for k = 1, · · · ,K.

Thus,
P [v ∼ w ∧ ϕE(vw) = k] = xvkxwk.

That is, the random variable ϕE(vw) is distributed according to the discrete distribution

ϕE(vw) ∼ Discrete({0, 1, · · · ,K}, [1−
K∑

k=1

xvkxwk, xv1xw1, · · · , xvKxwK ]).

If the matrix X is itself random – for instance, if the individual vertex vectors (rows of X)
are obtained by first drawing Xv ∼ Dirichlet(αv) where the αv ∈ RK+1

+ so that the vectors Xv

satisfy the constraint that XT
v Xw ∈ [0, 1] – then the random variables ϕE(vw) for ARDPG(X) are

not independent but are conditionally independent, given X. (In a slight abuse of standard notation,
we will consider Xv ∼ Dirichlet(αv) with αv ∈ RK+1

+ to be a length K random vector, with Xvk ≥ 0
for all k and

∑
k Xvk ≤ 1; that is, we drop the (K + 1)st element of a standard Dirichlet in which

Xv(K+1) = 1−
∑K

k=1Xvk.)
It is straightforward to extend this model to allow the vectors corresponding to each attribute

to be multi-dimensional.
We modify the unattributed RDPG algorithm to produce an estimation of the vectors in the

attributed case:

1. Let L(G, d) denote the linear algebra approach to fit vectors of dimension d to the unattributed
graph G. Thus L(G, d) is an n × d matrix X̂ that is the estimate of the RDPG vectors (the
parameters of the RDPG model) that produced G.

2. Given attributed graph Ga, for k ∈ {1, . . . ,K} let Ga
k = (V,Ea

k) where Ea
k = {vw : ϕE(vw) = k}

is the subset of edges in Ea with attribute k.

3. x̂k = L(Ga
k, 1).

4. X̂o = (x̂1, . . . , x̂K).

We can ensure that the resulting vectors are in the first orthant, although post-processing is necessary
if we demand that the vectors be in the simplex (or the unit ball) so that xT

v xw is guaranteed to be
in [0, 1]. The simplicity of the algorithm is due to the decomposition in Step 2. It must be noted,
however, that something is lost due to this decomposition – in the original attributed graph Ga each
edge has exactly one attribute, while this dependency amongst the Gk is lost in our algorithm as we
process each Gk independently. The justification for this approach (beyond “it simplifies” and “it
works”) is based on the observation that for large n the dependency is negligible.
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Given an observed attributed graph Go with only some of the vertex attributes observed, the
vertex nomination procedure we propose is as follows. (1) Fit an attributed RDPG, obtaining X̂o.
Notice that this estimate does not use vertex attributes. (2) Using the subset M′ of vertices with
observed vertex attributes, rank the candidate vertices V \M′ according to their relationship to M′.
Having recovered latent space representations for the vertices in (1), the inferential step (2) may be
performed in numerous ways; we present a few simple approaches in the experiments below.

Simulation Experiments

We define an attributed RDPG model κ(n, πV \M,m, πM, r) for the vertex nomination task as
follows. Let πV \M and πM be in the standard (unit) K-simplex ∆K ⊂ RK+1; that is, they are
(K + 1)-dimensional probability vectors. Let n > m > 0 and r > 0 be given. Consider

XV \M
iid∼ Dirichlet(rπV \M +~1)

and
XM

iid∼ Dirichlet(rπM +~1)

to be (n −m) × K and m × K-dimensional matrices, respectively. Write X = (XV \M, XM) as the
n×K matrix of (random) vertex vectors. Then κ(n, πV \M,m, πM, r) = ARDPG(X) is our attributed
random dot product graph model, with each dimension corresponding to an edge attribute as described
above. Again, the extension to multi-dimensional vertex vectors for each attribute is straightforward.

Ga ∼ κ(n, πV \M,m, πM, r),

and for 0 < m′ < m the observed attributed graph

Go ∼ κ(n, πV \M,m, πM, r;m
′),

involves selecting a random subset M′ ⊂M – all n−m vertex attributes for V \M are missing and
m−m′ of the vertex attributes for M are missing completely at random.

For our simulation experiments, we consider πV \M = [0.2, 0.2, 0.6]T and πM = [q, 0.2, 0.8− q]T

with q ranging from 0.2 (no signal) to 0.8. The parameter r controls the variability of the Dirichlet
random vectors; r = 0 gives a uniform distribution on the simplex (no signal) and r →∞ yields point
mass (no variability); we use r = 100. We consider m = 10 and m′ = 5, and consider two cases for n
(100 and 250).

Table 1 presents our simulation results, based on 1000 Monte Carlo replicates. We obtain the
estimate of the latent vertex vector matrix X̂o as described above, and then rank the candidate vertices
V \M′ and evaluate based on (1) p∗ = P [v∗ ∈ M \M′] where v∗ is the top-ranked candidate vertex
and (2) Normalized Sum of Reciprocal Ranks given by

NSRR =

 ∑
v∈M\M′

1
rank(v)

 /

(
m−m′∑
i=1

1
i

)
.

Our candidate vertex rankings, based on the latent space estimate X̂o, are given by (1) the number
N(v) of observed signal verticesM′ amongst the m′ nearest neighbors of v and (2) the posteriors ρ(v)
from a linear discriminant analysis classifier.

As expected, the performance improves as q increases. Note that in this case the performance
improves as n increases. While the latent vertex vector estimation improves as n increases, larger n
(for fixed m,m′) results in a harder vertex nomination problem. This trade-off deserves further study.
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q 0.2 0.3 0.4 0.5 0.6 0.7 0.8

n = 100
N(v)

p∗ 0.05 0.10 0.26 0.50 0.73 0.92 0.98
NSRR 0.09 0.12 0.23 0.40 0.60 0.79 0.91

ρ(v)
p∗ 0.07 0.20 0.49 0.78 0.93 0.98 0.99

NSRR 0.13 0.24 0.46 0.68 0.83 0.92 0.96

n = 250
N(v)

p∗ 0.02 0.07 0.30 0.70 0.93 0.99 1.00
NSRR 0.04 0.07 0.23 0.53 0.79 0.92 0.97

ρ(v)
p∗ 0.01 0.20 0.62 0.92 0.98 1.00 1.00

NSRR 0.05 0.22 0.54 0.82 0.93 0.98 0.99

Table 1: Vertex nomination results as a function of q, based on 1000 Monte Carlo replicates (see text).

Experiment on Enron Graphs

The Enron email corpus has been widely studied. Using the data described in Priebe et al.
[2005], we construct an attributed graph Ga

[tmin,tmax] on the n = 184 vertices by including an edge
v ∼ w if and only if there is at least one message between v and w during the time interval [tmin, tmax]
and attributing this edge based on classification of topics extracted from the content of the messages.
For time interval T1 (May 7, 2001 - Sep 23, 2001) we identify a partition (M, V \ M) for which
M represents a small (m = |M| = 10) collection of vertices connecting at a higher rate and with
a distinguished edge-attribute distribution compared to V \M. Figure 2 presents the results of our
latent vector extraction process on Ga

T1
and on Ga

T0
for time interval T0 (Sep 24, 2001 - Feb 4, 2002)

preceding T1. A two-sample Wilcoxon rank sum test on the ranks rv of the nearest element ofM (not
including v itself if v ∈M) to v (this test is closely related to the NSRR performance criterion for the
vertex nomination task) yields p-values p < 0.01 for Ga

T1
and p ≈ 0.7 for Ga

T0
. That is, statistically

significant signal (M vs. V \M) is identified based on these ranks for T1 but not for T0.

Discussion

The experiments presented above show that vertex vector estimation in the attributed RDPG
model may be a viable approach to addressing the vertex nomination problem. Furthermore, sparse
matrix methods make the approach suitable for large graphs. The methods presented are easily
generalized to cases where there are more than two vertex attributes as well as observed vertex
attributes for more than one attribute (as opposed to just the attribute-of-interest).

We have assumed in this work that the edges and their attributes, as well as whatever vertex
attributes we observe, are perfectly observed. In real problems there may be some error in the
attribution processes – some edges may be unobserved, and the observed vertex and edge attributes
may have errors. Also, in applications such as the one considered in Priebe et al. [2005] and related
papers, one may observe multiple random graphs on the vertices – a time series of graphs – and utilizing
this extra information, if done properly, can improve performance. Furthermore, we have assumed
that the edge-existence process and the edge-attribution process are both completely determined by
the same vectors. It is straightforward to extend the model to allow some of the dimensions in the
vectors to be associated with only the edge-existence, while others are associated only with the edge-
attribution, and similar variations. Estimation procedures in these cases would be of great interest.

Finally, Bayesian methods are applicable to our vertex nomination problem. Prior distributions
for the parameters of the attributed RDPG model κ(n, πV \M,m, πM, r) allow the potential for superior
latent vector estimates and Bayesian model averaging.
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Figure 2: The results of our latent vector extraction process on two Enron graphs, Ga
T0

(left) and Ga
T1

(right). The symbols correspond to M (squares) and V \M (circles). Inference suggests that vertex
nomination via attributed random dot product graphs works for this real data (see text).
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