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I ntroduction

In this paper we consider the single-index model given by

1)y =g(B'%x¢) + ey,

fort =1,...,T, whereg is known as the link function and the parameter ve¢t@s known as the index vector.
We want to estimate such components under the assumptiog, tfrdliows a scale mixture of Normals and
thatx; is ap-dimensional input vector by using bayesian P-splines. We note here that the par@rete
identifiable up to a multiplicative constant, it must have unit (Euclidean) noem3'3 = 1.

Scale Mixture of Normals

A random variableX is said to follow a scale mixture of Gaussian distributions if it can be written
asX = Z/\/o, whereZ ~ N(0,1) ando is any positive (continuous or discrete) random variable. The
distribution of o, H, is called mixture distribution and, if it is absolutelly continuous, its probability density
function, h, is called a mixture density. The pdf of scale mixture of normals may be represented by

@ pla) = /0 " o124(0M20)dH (o),

or, when the mixture distribution is absolutelly continuous,

pla) = /0 o240 2y (o)dor

where¢ is the pdf of the standard normal distribution afi\dtands for the parameter vector associated to the
mixture distribution. For a more detailed treatment on the scale mixture of normals, see Andrews and Mallows
(1974).

Some distributions which may be modeled as scale mixture of normals and their mixing distributions are:
() The Student t distributionvith » degrees of freedom and scale paramétsia scale mixture of normals with
o~T (%, g) i.e., a gamma distribution with both shape and inverse scale parameters (or rate) eqial to
(i) The Cauchy distributioris the particular case where= 1. (iii) This class also contains the/perbolicand
variance-gamma distributionghe logistic and contaminated normal distributions and the modulated normal
distribution type Il (the Slash distribution being a particular case).
From a modeling perspective, we note that if we write

52

Ye|xe; 00 ~ N <f(Xt)7 ) )

gt

(3)
g ~ hC’
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whered stands for a scale parameter, then the pdj;aé given by

Oy

0o g1/ ([ 12
4)  pyilxe) = /0 Tﬁb <t(5(yt - f(Xt))> he(oy)doy,

which is just a scaled and shifted version of (2). The random variahlase not observable and so they must
be treated as latent variables.

Splines, B-Splines and P-Splines

We assume that the (link) functigncan be writtes as a linear combination of some basis functions such
as the B-splines,

M
g(x) = > aiBi(w),
i=1

where)M is the number of elements in the basis dds the its ithmember. Thus(g(3'x1), ..., g(8'x1)) =
Ba, with B(3) being a matrix with B;(3'x1), ..., B;(8'xr))" as itsi-th column and therefore

y = B(B)a + de,
wheree = (e1, ..., er)’. Notice that, conditioning on the latent variables;, we get
(5) ylo:ia,B,6> ~N (B(B)a,6*W),

whereo; " po(0e]C), W = diag(al_l, ...,at‘l). Here,( is just a parameter vector which determines the prior
distribution ofo.

We impose some penalizations on the estimate of the target function. Here, such penalizations are intro-
duced by usindP-splines, which are just the combination of B-splines and the penalizatiargen by

M
6) A ) (A

j=d+1

where\ acts as a smoothing parameter. In fact, for large values tife target function estimate is smoother.
This approach is computationally attractive and can be easily written in the matrix form of the operator differ-
ence of ordet, which we shall represent bif,. For more on the construction of the matriy;, we refer to

Eilers and Marx (1996) and Eilers and Marx (2010).

Bayesian P-Splines

In the Bayesian approach the penalties in (6) are replaced by their stochastic counterparts. For example
when the first differenceAa; are penalized, we consider a first order random walk. On the other hand, if we
consider second differences, a second-order random is used. More precisely, we assume

a; = aj—1 + Uj
and
a; = 26Lj,1 — a;—2 + uj,
where{u;} is a white noise, respectively. As in Lang and Brezger (2004), we assume;that~ A0, 72)
and thata;, or a; andas, have noninformative priors. We note thdtworks as a smoothing parameter and has
a role similar to the smoothing parameteused in the frequentist case. A consequence is that

1
(7)  p(alr?) o exp <—2T2a’Ka) ,
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where K is equal to/K; and K for the first-order and second-order random walk, respectively. It is worth to
note that conditioning on the latent random vecter, the relation (5) holds and

552y~ BB Wy — B(B)a) — 5 aKa

+log ps(B) + log ps(6*) — log 6 + log p- (1)
T

1
+logh(a() + 5 ;bg ot +logp¢(€),

logp(a, B,6%, 7% 0,Cly) =

where= stands for equality up to a constant. Hence the posterior maximum likelihood estimatenotke-
sponds to a penalized weighted least-squares estimate.

Likelihood and Priors
We have already set priors to the B-splines coefficiargs that
a|m? ~ N(0, 7'2Kd_1).

In what follows we set the other priors.

Likelihood and M odeling by Using Latent Variables
Modeling the data ity as in (3), we get

8) ylo ~N (Br(x;B8)a; 6*W),

whereo; 9 andW = (L, .., 1T . Of course, the above r.v.s are conditioned on the input variahleass

o1’ o
we shall see the r.v.g; work as weights which neutralize the effects of an eventual heavy tail phenomenon.
Besides, such hierarchical structure, i.e., using the latent variahlagns the data analysis much simpler.

Priors

Index Vector (8): we take as prior distribution the uniform distribution (on the hypersphere embedd&d in
{B=(B1,...,5p) : ||B]| = 1}, see Wang (2009)) so that

p(B) == P°T (g) :

Scale and Smoothing Parameters (6% and 72): We assume a gamma-inverse prior distribution for the scale
and smoothing parameters. More precisely, we¥$et Gl(ag, 7o) andr? ~ Gl(aq, v1).

Mixture Distribution Parameters (¢): In this paper, we give special attention to Student-t distribution and
set an exponential prior far = v,

p(v) = Aexp{—Av}.

Sampling Scheme

In order to sample the parameters from their joint posterior distribution, we suggest to use the Metropolis-
within-Gibbs algorithm. In fact, it is not possible to represent all the full conditional distributions for the
parameters, 3, 62, 72 andv as well as the full conditional distribution for the latent variabigsn terms of
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standard distributions.We shall consideas known, but later we shall consider the particular case where the
degrees of freedom (& v) for the Student’s t distribution is not known.

Some of the full conditional distributions may be fully determined, namédyy , x, o; 3, 62, 72), p(62|y, x, o; a, [
andp(r?|y,x, o;a, 3,?). See Taddeo and Morettin for details.

M etropolis-within-Gibbs

Until now we have been able to explicitly derive the full conditional distributions associated with some
of the parameters, but the same is not necessarily true for and, when appropriat&,. To overcome this
difficulty, we introduced a Metropolis-Hastings step into the Gibbs sampler. For this, we could, for example,
use a prior proposal (g~ h(o:|¢)). However, although this procedure is quite simple and general, if the
likelihood p and the prior (and proposah) are not concentrated in the same region, this method may be not
very efficient, and therefore a more sophisticated approach would be necessary. On the other hand, fortunatel
there are some interesting cases where the above posterior distribution may written as a closed formula: the
contaminated normal, the Student’s t and the Modulated Normal type Il family distributions. In the first case,
we have

1-¢, ifo=1,
p(0t|yt7x;a,ﬂ75277—2) = 5/, ifO':)\z7
0, otherwise,

where¢’ = Cié\ exp{—r(B3;a)?)\/(26%)} andC, is a normalizing constant which depends on the observation
(ye;x})’. For the Student’s t distribution, we have

v+l . 2 /52
1exp{1/+rt(ﬂ,a) /0 at},

p(0t|yt7X;aaﬂ752vT2) O<O—tT 2

s0 that

a2 /82
(9) Jt|yt’x;a’ﬁ’52’72mr<u+1 v+ri(B;a)?/s )

2 7 2
It follows immediately from (9) that, it; ~ Cauchy, the weights, are exponentially distributed. For the
Modulated Normal type Il family, we have
v — (0 a 2

p(oelye, x;a, 8,06%,7%) O'?g /21 exp {—75('2852)@} To,1)(0).
Although this is similar to the p.d.f. associated to the gamma distribution, the valugsua constrained to be
in the interval(0, 1). Hence in this case the simulation is not straight and we need to use some algorithm like,
for example, the accept-reject one. Finally, for the hyperbolic and for the variance-gamma distributions,

r(B;a)? %, 1> ’

O-t’ytax; av/Ba 6257-2 ~ gIg <¢ + Ta

and

. a)2 1
O-t’yt’x; a, 3, 62,7'2 ~ G1G (rt(ﬂ,a) y) ’

2 VT

respectively.
In the case of the paramet@r note that the (posterior) full conditional distribution is given by

1

. 2 2
(10) p(Bly,x,0;a,0°,7 )ocexp{-ms2

(8, a>’w1r<a,a>} 188 = 1).
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Since this distribution does not match up with any standard distribution, we usstrapdlis-Hastings step
to sample from (10). To this end, we assume a von Mises-Fisher distribution, with mean difggtaom
concentration parameter> 0, as proposal, so that, giveh, (sampled in the previous step of the algorithm),

KP/2—1
(2m)P/2 1, 91 (K)

wherel,, ,_, denotes the Bessel function of first kind and orgéz — 1. Finally, we take

p(5*|50a’%) = eXp{’Qﬂé):B*}a

4 By,  with probability 1 — p(3,, 3%),
8., with probability p(3,, 3%),

where

p(ﬂo 13 ) — min{p(ﬁ*’y’x’a;a7 (52,72)1)(50‘5*7&) 1}

p(/60|Y7X70-;a7 5277_2)1)(6*‘/807’%)’
. 1 _
= min {exp {—252(1'* — 1) W (rs + ro)} ) 1} ,

is the acceptance probability amd = r(3,,a) andry = r(8,,a). In the above result, we have used the fact

thatp(ﬁ* ’,60, ﬁ) = p(ﬂ0|ﬁ*7 ﬁ)'

Sampling the Degrees of Freedom for Student t Errors

Given that we are paying particular attention to the Student-t distribution, we briefly descritgg-haw
may be sampled from its posterior distribution (for details, we refer to Geweke (1993) and the references
therein). The target distribution is

p(vly,x,0:a,8,0%,7%) « p(a|v)p(v|\, 1)

T

x (5) * expq —V 1§T:(a —logoy) + A | p W(v > 1p)
F(%)T 5 t t 0);

t=1

and the proposal distribution is given by an exponential distribution with pararkgtetich is a parameter to

be calibrated. Note that in this case, we would have to use twice the Metropolis-Hastings algorithm. However,
as suggested by Mler, see Miller (1993), we can reduce the acceptance or rejection of the proposals in a single

step. This results in one Metropolis-Hastings algorithm within the Gibbs sampling, rather than a combination
of such algorithms and also produces a global approximation (for the posterior full conditiofiedrad v/),

instead of local approximations of the individual posterior full conditional distributiorsaridy, respectively.

Now, since the proposals fgt, andv, are independent and

p(ﬁ? V‘y7 X? 0-7 a’ 527 T2) = p(B|Y7 X? 0-, a7 52)p(1/|0')
it follows that the “joint” acceptance probability is given by

p((667 VPT)/v (6;7 V*)/) = min { €xXp {_2(152(1'* - I‘0>/W_1(I‘* + I‘())}

Vs VT* Vpr T
exp { - (St — )\*)(V* — Vpr)} [((2)}—‘(2)]

= min{y(By, B,)y(Vpr, v¥), 1},

where

7(160716*) = €xp {_1

552 (rv — o)Wl (ry + ro)} ;
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and
e T
Vx\ 2 Vpr
Y (Vpr, v¥) = exp {(stypr —1) <1 — :* )} M 7
/0L (F) T (%)
with
1 X
t=35 Z —log o) + A.
Remarks

See Taddeo and Morettin (2011) for a simulation study and an application to an environmental study.
Single-Index models are a way to overcome the well-known Curse of Dimensionality, typical of nonparametric
multivariate models. In this paper, we chose to allow the noise to follow distributions belonging to a broader
class of distributions than just members of the class of normal distributions, the class of scale mixture of
Gaussians distributions. We present a Bayesian framework for estimation and inference of the parameters o
interestj.e., the parameters that make up the model (1).
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