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Introduction

In this paper we consider the single-index model given by

(1) yt = g(β′xt) + δǫt,

for t = 1, ..., T , whereg is known as the link function and the parameter vectorβ is known as the index vector.
We want to estimate such components under the assumption thatǫt follows a scale mixture of Normals and
thatxt is ap-dimensional input vector by using bayesian P-splines. We note here that the parameterβ to be
identifiable up to a multiplicative constant, it must have unit (Euclidean) norm,i.e.,β′β = 1.

Scale Mixture of Normals

A random variableX is said to follow a scale mixture of Gaussian distributions if it can be written
asX = Z/

√
σ, whereZ ∼ N (0, 1) andσ is any positive (continuous or discrete) random variable. The

distribution ofσ, H, is called mixture distribution and, if it is absolutelly continuous, its probability density
function,h, is called a mixture density. The pdf of scale mixture of normals may be represented by

(2) p(x) =

∫

∞

0
σ1/2φ(σ1/2x)dHζ(σ),

or, when the mixture distribution is absolutelly continuous,

p(x) =

∫

∞

0
σ1/2φ(σ1/2x)hζ(σ)dσ,

whereφ is the pdf of the standard normal distribution andζ stands for the parameter vector associated to the
mixture distribution. For a more detailed treatment on the scale mixture of normals, see Andrews and Mallows
(1974).

Some distributions which may be modeled as scale mixture of normals and their mixing distributions are:
(i) TheStudent t distributionwith ν degrees of freedom and scale parameterδ is a scale mixture of normals with
σ ∼ Γ

(

ν
2 ,

ν
2

)

, i.e., a gamma distribution with both shape and inverse scale parameters (or rate) equal toν/2.
(ii) The Cauchy distributionis the particular case whereν = 1. (iii) This class also contains thehyperbolicand
variance-gamma distributions, the logistic and contaminated normal distributions and the modulated normal
distribution type II (the Slash distribution being a particular case).

From a modeling perspective, we note that if we write

(3)
yt|xt;σt ∼ N

(

f(xt),
δ2

σt

)

,

σt ∼ hζ ,
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whereδ stands for a scale parameter, then the pdf ofyt is given by

(4) p(yt|xt) =

∫

∞

0

σ
1/2
t

δ
φ

(

σ
1/2
t

δ
(yt − f(xt))

)

hζ(σt)dσt,

which is just a scaled and shifted version of (2). The random variablesσt are not observable and so they must
be treated as latent variables.

Splines, B-Splines and P-Splines

We assume that the (link) functiong can be writtes as a linear combination of some basis functions such
as the B-splines,

g(x) =
M
∑

i=1

aiBi(x),

whereM is the number of elements in the basis andBi is the its ithmember. Thus,(g(β′x1), ..., g(β
′xT ))

′ =

Ba, withB(β) being a matrix with(Bi(β
′x1), . . . , Bi(β

′xT ))
′

as itsi-th column and therefore

y = B(β)a+ δǫ,

whereǫ = (ǫ1, ..., ǫT )
′. Notice that, conditioningǫ on the latent variablesσt, we get

(5) y|σ;a,β, δ2 ∼ N
(

B(β)a, δ2W
)

,

whereσt
iid∼ pσ(σt|ζ), W = diag(σ−1

1 , ..., σ−1
t ). Here,ζ is just a parameter vector which determines the prior

distribution ofσ.
We impose some penalizations on the estimate of the target function. Here, such penalizations are intro-

duced by usingP-splines, which are just the combination of B-splines and the penalization ona given by

(6) λ
M
∑

j=d+1

(∆daj)
2,

whereλ acts as a smoothing parameter. In fact, for large values ofλ, the target function estimate is smoother.
This approach is computationally attractive and can be easily written in the matrix form of the operator differ-
ence of orderd, which we shall represent byKd. For more on the construction of the matrixKd, we refer to
Eilers and Marx (1996) and Eilers and Marx (2010).

Bayesian P-Splines

In the Bayesian approach the penalties in (6) are replaced by their stochastic counterparts. For example,
when the first differences∆aj are penalized, we consider a first order random walk. On the other hand, if we
consider second differences, a second-order random is used. More precisely, we assume

aj = aj−1 + uj

and

aj = 2aj−1 − aj−2 + uj ,

where{uj} is a white noise, respectively. As in Lang and Brezger (2004), we assume thatuj |τ2 ∼ N (0, τ2)

and thata1, ora1 anda2, have noninformative priors. We note thatτ2 works as a smoothing parameter and has
a role similar to the smoothing parameterλ used in the frequentist case. A consequence is that

(7) p(a|τ2) ∝ exp

(

− 1

2τ2
a′Ka

)

,
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whereK is equal toK1 andK2 for the first-order and second-order random walk, respectively. It is worth to
note that conditioningy on the latent random vectorσ, the relation (5) holds and

log p(a,β, δ2, τ2;σ, ζ|y) ∼= 1

2δ2
(y −B(β)a)′W−1(y −B(β)a)− 1

2τ2
a′Ka

+ log pβ(β) + log pδ(δ
2)− log δ2 + log pτ (τ

2)

+ log h(σ|ζ) + 1

2

T
∑

t=1

log σt + log pζ(ζ),

where∼= stands for equality up to a constant. Hence the posterior maximum likelihood estimate ofa corre-
sponds to a penalized weighted least-squares estimate.

Likelihood and Priors

We have already set priors to the B-splines coefficientsa so that

a|τ2 ∼ N (0, τ2K−1
d ).

In what follows we set the other priors.

Likelihood and Modeling by Using Latent Variables

Modeling the data iny as in (3), we get

(8) y|σ ∼ N
(

Bτ (x;β)a; δ
2W
)

,

whereσt
iid∼ h andW =

(

1
σ1
, ..., 1

σT

)

. Of course, the above r.v.s are conditioned on the input variablesxt. As
we shall see the r.v.sσt work as weights which neutralize the effects of an eventual heavy tail phenomenon.
Besides, such hierarchical structure, i.e., using the latent variablesσt, turns the data analysis much simpler.

Priors

Index Vector (β): we take as prior distribution the uniform distribution (on the hypersphere embedded inR
p,

{β = (β1, ..., βp) : ‖β‖ = 1}, see Wang (2009)) so that

p(β) = π−p/2Γ
(p

2

)

.

Scale and Smoothing Parameters (δ2 and τ2): We assume a gamma-inverse prior distribution for the scale
and smoothing parameters. More precisely, we setδ2 ∼ GI(α0, γ0) andτ2 ∼ GI(α1, γ1).

Mixture Distribution Parameters (ζ): In this paper, we give special attention to Student-t distribution and
set an exponential prior forζ = ν,

p(ν) = λ exp{−λν}.

Sampling Scheme

In order to sample the parameters from their joint posterior distribution, we suggest to use the Metropolis-
within-Gibbs algorithm. In fact, it is not possible to represent all the full conditional distributions for the
parametersa, β, δ2, τ2 andν as well as the full conditional distribution for the latent variablesσt in terms of
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standard distributions.We shall considerζ as known, but later we shall consider the particular case where the
degrees of freedom (ζ= ν) for the Student’s t distribution is not known.

Some of the full conditional distributions may be fully determined, namelyp(a|y,x,σ;β, δ2, τ2), p(δ2|y,x,σ;a,β
andp(τ2|y,x,σ;a,β, δ2). See Taddeo and Morettin for details.

Metropolis-within-Gibbs

Until now we have been able to explicitly derive the full conditional distributions associated with some
of the parameters, but the same is not necessarily true forσ, β and, when appropriate,ζ. To overcome this
difficulty, we introduced a Metropolis-Hastings step into the Gibbs sampler. For this, we could, for example,
use a prior proposal (σ∗t ∼ h(σt|ζ)). However, although this procedure is quite simple and general, if the
likelihood p and the prior (and proposal)h are not concentrated in the same region, this method may be not
very efficient, and therefore a more sophisticated approach would be necessary. On the other hand, fortunately,
there are some interesting cases where the above posterior distribution may written as a closed formula: the
contaminated normal, the Student’s t and the Modulated Normal type II family distributions. In the first case,
we have

p(σt|yt,x;a,β, δ2, τ2) =















1− ξ′, if σ = 1,

ξ′, if σ = λ2,

0, otherwise,

whereξ′ = Ctξλ exp{−rt(β;a)2λ/(2δ2)} andCt is a normalizing constant which depends on the observation
(yt;x

′

t)
′. For the Student’s t distribution, we have

p(σt|yt,x;a,β, δ2, τ2) ∝ σ
ν+1

2
−1

t exp

{

−ν + rt(β;a)
2/δ2

2
σt

}

,

so that

(9) σt|yt,x;a,β, δ2, τ2 ∼ Γ

(

ν + 1

2
,
ν + rt(β;a)

2/δ2

2

)

.

It follows immediately from (9) that, ifǫt ∼ Cauchy, the weightsσt are exponentially distributed. For the
Modulated Normal type II family, we have

p(σt|yt,x;a,β, δ2, τ2) ∝ σ
(ν+1)/2−1
t exp

{

−rt(β;a)
2

2δ2
σt

}

1I(0,1)(σt).

Although this is similar to the p.d.f. associated to the gamma distribution, the values ofσt are constrained to be
in the interval(0, 1). Hence in this case the simulation is not straight and we need to use some algorithm like,
for example, the accept-reject one. Finally, for the hyperbolic and for the variance-gamma distributions,

σt|yt,x;a,β, δ2, τ2 ∼ GIG
(

ψ +
rt(β;a)

2

δ2
, κ,−1

)

,

and

σt|yt,x;a,β, δ2, τ2 ∼ GIG
(

rt(β;a)
2

δ2
, ν,

1− ν

2

)

,

respectively.
In the case of the parameterβ, note that the (posterior) full conditional distribution is given by

(10) p(β|y,x,σ;a, δ2, τ2) ∝ exp

{

− 1

2δ2
r(β,a)′W−1r(β,a)

}

1I(β′β = 1).
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Since this distribution does not match up with any standard distribution, we use a Metropolis-Hastings step
to sample from (10). To this end, we assume a von Mises-Fisher distribution, with mean directionβ0 and
concentration parameterκ > 0, as proposal, so that, givenβ0 (sampled in the previous step of the algorithm),

p(β
∗
|β0, κ) =

κp/2−1

(2π)p/2Ip/2−1(κ)
exp{κβ′

0β∗
},

whereIp/2−1 denotes the Bessel function of first kind and orderp/2− 1. Finally, we take

β =

{

β0, with probability1− ρ(β0,β
∗),

β
∗
, with probabilityρ(β0,β

∗),

where

ρ(β0,β∗
) = min

{

p(β
∗
|y,x,σ;a, δ2, τ2)p(β0|β∗

, κ)

p(β0|y,x,σ;a, δ2, τ2)p(β∗
|β0, κ)

, 1

}

= min

{

exp

{

− 1

2δ2
(r∗ − r0)

′W−1(r∗ + r0)

}

, 1

}

,

is the acceptance probability andr∗ ≡ r(β
∗
,a) andr0 ≡ r(β0,a). In the above result, we have used the fact

thatp(β
∗
|β0, κ) = p(β0|β∗

, κ).

Sampling the Degrees of Freedom for Student t Errors

Given that we are paying particular attention to the Student-t distribution, we briefly describe howζ = ν

may be sampled from its posterior distribution (for details, we refer to Geweke (1993) and the references
therein). The target distribution is

p(ν|y,x,σ;a,β, δ2, τ2) ∝ p(σ|ν)p(ν|λ, ν0)

∝
(

ν
2

)
Tν
2

Γ
(

ν
2

)T
exp

{

−ν
(

1

2

T
∑

t=1

(σt − log σt) + λ

)}

1I(ν > ν0),

and the proposal distribution is given by an exponential distribution with parameterλ∗, which is a parameter to
be calibrated. Note that in this case, we would have to use twice the Metropolis-Hastings algorithm. However,
as suggested by M̈uller, see M̈uller (1993), we can reduce the acceptance or rejection of the proposals in a single
step. This results in one Metropolis-Hastings algorithm within the Gibbs sampling, rather than a combination
of such algorithms and also produces a global approximation (for the posterior full conditional ofβ andν),
instead of local approximations of the individual posterior full conditional distributions ofβ andν, respectively.
Now, since the proposals forβ

∗
andν∗ are independent and

p(β, ν|y,x,σ;a, δ2, τ2) = p(β|y,x,σ;a, δ2)p(ν|σ)

it follows that the “joint” acceptance probability is given by

ρ((β′

0, νpr)
′, (β′

∗
, ν∗)

′) = min

{

exp

{

− 1

2δ2
(r∗ − r0)

′W−1(r∗ + r0)

}

exp

{

− (st − λ∗)(ν∗ − νpr)

}[

(

ν∗
2

)
ν∗
2 Γ

(νpr
2

)

(νpr
2

)

νpr

2 Γ
(

ν∗
2

)

]T

= min{γ(β0,β∗
)γ(νpr, ν∗), 1},

where

γ(β0,β∗
) ≡ exp

{

− 1

2δ2
(r∗ − r0)

′W−1(r∗ + r0)

}

,
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and

γ(νpr, ν∗) ≡ exp

{

(stνpr − 1)

(

1− ν∗
νpr

)}





(

ν∗
2

)
ν∗
2 Γ

(νpr
2

)

(νpr
2

)

νpr

2 Γ
(

ν∗
2

)





T

,

with

st ≡
1

2

T
∑

t=1

(σt − log σt) + λ.

Remarks

See Taddeo and Morettin (2011) for a simulation study and an application to an environmental study.
Single-Index models are a way to overcome the well-known Curse of Dimensionality, typical of nonparametric
multivariate models. In this paper, we chose to allow the noise to follow distributions belonging to a broader
class of distributions than just members of the class of normal distributions, the class of scale mixture of
Gaussians distributions. We present a Bayesian framework for estimation and inference of the parameters of
interest,i.e., the parameters that make up the model (1).
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