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The terminology – testlet in educational/psychological testings refers to a group of test items

which are administered together to test takers, and often used in, for example, a comprehensive test.

Therefore, unlike those in the item response theory, the items in a testlet are usually correlated, since

they may refer to a passage of a paragraph or share a common content. There are several models used

to model testlest response data. Among them, a modified logistic model below, originally used in the

item response theory, is commonly used for modeling the dichotomous responses to testlets:

P (Yij = 1) = cj + (1− cj)logit
−1(tij),(1)

tij = aj(θi − bj − ri,k(j))(2)

where Yij denotes the response of a test-taker with the ability θi to the item j, parameters aj , bj
and cj retain their original interpretation as in the item responser theory, and the newly introduced

parameter ri,k(j) is the parameter of testlet effect of item j with person i that is nested within testlet

k. Note that if ri,k(j) = 0 for all i, j and k, then (1) becomes the classical 3-parameter logistic model

used in the item response theory.

Suppose those item parameters are known in advance, and our goal is to estimate the ability

levels, θ’s, of test takers. Then for this kind of the correlated binary responses data, the method of

the generalized estimating equation (GEE) (Liang and Zeger, 1986) can be used. In addition, as in

the variable length computerized adaptive testing, it is of interest to know how many testlets used

will suffice to obtain an estimate of θ with a satisfactory (prescribed) accuracy. In this study, we use a

fixed width confidence interval to manage the accuracy of estimation of θ, and a sequential method is

employed such that the test is stopped as long as the prescribed accuracy for the estimate is reached.

Assume the exchangeable correlations among items within a testlet, and items from different

testlets are mutually independent. Thus, GEE with a “diagonal block” working covariance matrix is

used. For a given test-taker i, let corr(Yik(j), Yik(j′)) = ρk, j ̸= j′, be the correlation between responses

Yik(j), Yik(j′) to items j, j′, respectively, in the k-th testlet. Then correlation matrix for observations

within a testlet is equal to
1 ρk · · · ρk
ρk 1 · · · ρk
...

...
. . .

...

ρk ρk · · · 1

 ,

and set the working correlation matrix Vi = (Ai)
1/2Ri(ρ)(Ai)

1/2, where Ai is a ni × ni, (ni =∑ki
h=1 Jh, ki ≤ K), diagonal matrix with Pik(j) × (1 − Pik(j)) as its k(j)th diagonal element, and

Ri(ρ) is a ni × ni symmetric matrix as mentioned above. Let θ̂
(k)
i be the estimate of θi after taking k

testlets. Then it follows that

θ̂
(k)
i = θ0 + (

∑
k

D′
ikV

−1
ik Dik)

−1
∑
k

D′
ikV

−1
ik (Yik − Pik),(3)
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Table 1: The average estimates(standard deviation) and mean square error with the fixed width

confidence interval d = 0.3, and the target coverage frequency 0.95 (α = 0.05)

c θ θ̂ MSE of θ Coverage prob. No.of testlets

0.1 -2 -1.995(.147) 0.022 0.970 30.48(3.05)

-1.5 -1.493(.149) 0.022 0.946 27.38(2.50)

-1 -0.995(.150) 0.022 0.964 26.13(2.14)

-0.5 -0.487(.155) 0.024 0.950 25.29(1.94)

0 0.002(.150) 0.023 0.952 25.28(1.97)

0.5 0.500(.149) 0.022 0.948 25.16(1.95)

1 1.011(.148) 0.022 0.950 25.19(1.93)

1.5 1.506(.149) 0.022 0.952 25.80(2.07)

2 2.003(.151) 0.023 0.952 27.06(2.33)

where Dik = (∂Pik(1)/∂θ, . . . , ∂Pik(j)/∂θ, . . . , ∂Pik(n)/∂θ)
′. Hence, the estimate of θ is obtained

through an iterative algorithm. It is shown that the estimate of θ is asymptotically normally dis-

tributed. Based on the asymptotic normality of estimate of θ, the stopping rule for building a two-

sided confidence interval with its width no greater than 2d and coverage probability no less than

1− α is discussed below. (Note that Ri(ρ) = I is equivalent to assuming no correlation within a test-

let. For other correlation structures used for other applications in literature, please see, for example,

Fitzmaurice, et al. (1993) and Zorn (2001).)

Stopping rule

Suppose we require the width of a 1− α confidence interval of θ is no greater than 2d; that is,

we require that Pr(θi ∈ [θ̂kii −d, θ̂kii +d]) ≥ 1−α, Therefore, the stopping rule for constructing such a

confidence interval of θi is T (θi) = inf{ki ≥ 1 : Σ̂
(ki)
i ≤ (d/Zα/2)

2}, where ki is the number of testlets.

Note that instead assigning a new item each time in the variable length computerized adaptive testing,

here we administer a new testlet at a time.

Numerical Study

In following simulation study, the discrimination parameter a is chosen randomly from U(0.5, 2.5),

the difficult parameter b is chosen randomly from U(−3, 3) and the guessing parameter c = 0.1. The

target coverage probability is 0.95 (α = 0.05) with d = 0.3. We consider the case with ri,k(j) = 0

first. Table 1 shows the averages of estimates and their corresponding standard deviations for different

θ’s based on 500 runs. The number of testlets used to estimate θ is about 26 with 10 items in each

testlet. Table 2 shows results for model with ri,k(j) = −0.1. It can be seen from this table that due

to the testlet effect, the number of testlets used in this case is much larger than that of the case with

ri,k(j) = 0, while the coverage probabilities are still lower than their counterparts.

Mastery Testing with Group Sequential Method

In some testing situation, the qualifications of test takers, instead of their exact ability levels,

are of interest. This kind of a test is usually referred as a mastery/criterion reference test in educa-

tional/psychological testing. Thus, by treating each testlet as a group, we employ a group sequential

hypotheses testing method to it. Parapallona and Tsiasts (1994), as an extension of Emerson and

Fleming (1989), proposed a asymmetric test with unequal type I and II errors (see also Jennison and

Turnbulls (2000)). Furthermore, Lee, et al. (1996) proved that the method of group sequential can be
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Table 2: The average estimates(standard deviation) and mean square error with γ = −0.1, the fixed

width confidence interval d = 0.3, and the target coverage frequency 0.95 (α = 0.05)

c θ θ̂ MSE of θ Coverage prob. No.of testlets

0.1 -2 -1.892(.134) 0.030 0.926 106.10(49.71)

-1.5 -1.415(.171) 0.036 0.904 56.86(32.28)

-1 -0.958(.198) 0.041 0.866 36.81(21.91)

-0.5 -0.462(.192) 0.038 0.896 31.32(15.87)

0 -0.002(.201) 0.040 0.884 30.51(13.76)

0.5 0.440(.211) 0.048 0.834 30.87(15.41)

1 0.934(.207) 0.047 0.840 30.50(14.07)

1.5 1.433(.193) 0.042 0.878 30.60(14.95)

2 1.910(.179) 0.040 0.860 30.24(13.80)

applied to longitudinal data under some conditions on their correlation structure (see also Gange and

DeMets (1999)). We assume items in different testlets are mutually independent as before. Thus the

structure of correlation is assumed to be known in advance. The assumptions in Lee, et al. (1996) are

proved to be satisfied, asymptotically, and the group sequential method is therefore applicable here.

Suppose that the threshold of a mastery testing is θ = 0; that is our goal is to test whether θi’s

is greater than 0; that is, to test H0 : θi ≤ 0 vs. H1 : θi > 0.

Lemma 1. Suppose {Z1, · · · , ZK} is a sequence of test statistics observed at K analyses for a group

sequential study, which has a canonical joint distribution with information levels {I1, · · · , IK} for

the parameter θ. If (i) {Z1, · · · , ZK} is multivariate normal, (ii) E(Zk) = θ
√
Iθ, k = 1, · · · ,K,

(iii) Cov(Zk1 , Zk2) =
√

Ik1/Ik2 , 1 ≤ k1 ≤ k2 ≤ K; that is, Cov(θ̂k1 , θ̂k2) = I−1
k2

, (iv)Ik = (k/K)IK , k =

1, · · · ,K. Then, for testing H0 : θ = 0 vs. H1 : θ > 0 with Type I error probability α and power 1− β

at θ = δ, a general one-sided group sequential test is defined by pairs of constants (sk, tk) with sk < tk
for k = 1, · · · ,K − 1 and sK = tK , and the group sequential procedure is described below:

(i) For k = 1, · · · ,K − 1, if Zk ≥ tk, then stop samping and reject H0; if Zk ≤ sk stop sampling

and accept H0; otherwise administer testlet k+1.

(ii) When k = K, if ZK ≥ tK then stop the test and reject H0; if ZK < sK then stop the test

and accept H0.

(Note that we set sK = tK to ensure that the test will be terminated at analysis K.) For

k = 1, · · · ,K, the critical value with parameter ∆ are tk = C̃1(K,α, β,∆)(k/K)∆−1/2 and sk =

δ
√
Ik − C̃2(K,α, β,∆)(k/K)∆−1/2. The constants C̃1(K,α, β,∆) and C̃2(K,α, β,∆), which do not

depend on δ, are chosen to ensure the Type I error and power conditions. Wang and Tsiatis (1987)

proposed boundaries of different shapes, via different ∆’s, for a family of two-sided and one-sided tests.

Figure 1 is the boundaries of power family tests with four testlet of observations at α = β = 0.05 and

∆ = −0.5,−0.25, 0, 0.25. As ∆ goes large, the range of boundary becomes narrow. Wang & Tsiatis

tests includes Pocock and O’Brien & Fleming tests as special cases (When ∆ = 0.5, it is Pocock’s test,

while ∆ = 0, it becomes O’Brien & Fleming’s test). In order to have sK = tK , the final information

level must be

IK =

{(
C̃1(K,α, β,∆) + C̃2(K,α, β,∆)

)2
}
/δ2.

Then, sk and tk, k = 1, . . . ,K, are tk = C̃1(K,α, β,∆)(k/K)∆−1/2, and

sk =
(
C̃1(K,α, β,∆) + C̃2(K,α, β,∆)

)
(k/K)1/2 − C̃2(K,α, β,∆)(k/K)∆−1/2.
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Figure 1: Boundary of one sided test
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Figure 2: Power functions

Figure 2 shows the power function at different θ’s, and numerical study results are summarized in

Table 3 below.

Highlights of proofs

Comparing with some ordinary longitudinal studies, where correlation structure are usually

unknown, the advantage of our problem is that the correlation structure is known, which makes ap-

plications of GEE and the group sequential method to this problem easier. The proof of asymptotic

properties of sequential estimation under GEE can be done through the martingale convergence theo-

rems and martingale central limit theorem with respect to a suitable filtration, which can be found in

Chow and Teicher (1997) and Pollard (1984). Similar arguments are used in Chang and Ying (2004).

The large sample justification for applying the group sequential method to the testlet based mastery

testing follows from Lee, et. al (1998), and a similar technique has been employed in Park and Chang

(2010).

Summarization and Future Study

The idea of using GEE to deal with clustered/stratified data is classic. In GEE, the correlation

is usually assumed to be independent of the unknown regression parameters of interest, while in the

current problem the correlation is a function of test-taker’s abilities. Current approach takes the

advantage of working covariance of GEE under the scenario that the correlation structure is known,

and used all test takers to estimate the working covariance matrix as in the ordinary GEE, while

in our problem, test takers with different abilities share only the same correlation structure, but not

correlation values. Hence, the estimate of correlation is biased. Although, asymptotic properties

are obtained as in the ordinary GEE, the current procedures cannot be efficient. To improve the

performance of current approach, the traditional approach has to be modified.

As described in (2), the correlations of items within a testlet also depend on the test takers’

ability level θ, even for a same testlet. Hence, as in Liang and Zeger (1986), in order to estimate
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Table 3: Average Power and Frequency of Terminational testlet in Study 1 at at c = 0.1

∆ = −0.5

terminal testlet

θ power 1 2 3 4 total

-2 0.002 1 485 14 0 500

-1.5 0.000 0 461 39 0 500

-1 0.000 0 389 106 5 500

-0.5 0.006 0 240 235 25 500

0 0.080 0 78 293 129 500

0.5 0.400 0 24 207 269 500

1 0.844 0 50 254 196 500

1.5 0.988 0 154 290 56 500

2 1.000 0 305 189 6 500

∆ = −0.25

terminal testlet

θ power 1 2 3 4 total

-2 0.002 56 442 2 0 500

-1.5 0.000 27 465 8 0 500

-1 0.000 11 453 34 2 500

-0.5 0.000 2 354 134 10 500

0 0.064 0 171 247 82 500

0.5 0.394 0 62 223 215 500

1 0.858 0 96 251 153 500

1.5 0.988 0 255 207 38 500

2 1.000 1 380 112 7 500

∆ = 0

terminal testlet

θ power 1 2 3 4 total

-2 0.002 307 193 0 0 500

-1.5 0.000 269 230 1 0 500

-1 0.002 165 318 16 1 500

-0.5 0.012 71 339 84 6 500

0 0.064 27 241 168 64 500

0.5 0.404 5 136 211 148 500

1 0.818 12 173 197 118 500

1.5 0.978 22 302 139 37 500

2 1.000 45 391 61 3 500

∆ = 0.25

terminal testlet

θ power 1 2 3 4 total

-2 0.002 435 65 0 0 500

-1.5 0.002 408 91 1 0 500

-1 0.006 363 131 5 1 500

-0.5 0.012 257 213 26 4 500

0 0.064 138 224 106 32 500

0.5 0.380 54 167 192 87 500

1 0.792 64 190 171 75 500

1.5 0.980 123 264 85 28 500

2 0.998 183 278 34 5 500

the correlations of items within individual testlet, we need responses from independent test takers

with the same ability level. However, θ’s are the unknown parameters to be estimated. So, based on

their ability levels, to group test takers in advance is not possible. Hence, to resolve this obstacle, we

propose a multiple stages recursive estimating scheme, which is briefly described below and its results

of this method will be reported elsewhere. Similar idea can be applied to mastery testing.

Multiple-Step Estimation Procedure:

(i) Initialization: Estimate the abilities of test-takers with “working covariance matrix” equal

to an identity matrix.

(ii) Clustering: Group test-takers based on the estimated test-takers’ abilities obtained in (i).

(iii) Covariance Matrix Estimation: Estimate the covariance matrix within each cluster of test-

takers, and re-estimate the abilities of the test-takers within in this group.

(iv) Re-clustering: Re-group test-takers using the abilities estimated in (iii).

(v) Iteration: Repeat (iii) and (iv) until the estimates of abilities become stable based on some

prescribed criterion.

(vi) Stopping Criterion for Ability Estimation: Administer next testlet based on the estimated

ability levels until the estimated abilities satisfied a prescribed accuracy level.

Some remarks:

1: In (i), we first pretend all items are independent to obtain the initial estimates of abilities. However,
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This procedure will also work with other reasonable working covariance matrix.

2: We presume the number of test-takers is large enough such that there is no test-taker’s ability

is “isolated” and the number of test-takers in each groups is large enough for covariance matrix

estimation. Moreover, as the procedure is continuing, if clustering becomes finer, then the test-taker

sizes of individual groups become smaller. Hence, the size of group should be controlled such that the

covariance matrix can be estimated with certain quality.

3: The stopping criterion for the iteration procedure can be based on the sum of square of the

differences between two iterations. The choice of criterion depends on administration and/or the

nature of a test, and should become smaller when more testlets are assigned to test-takers as the

estimates of abilities become stable.

4: Moreover, no testlet selection method is discussed here. We believe that with a suitable adaptive

testlet selection rule, the performance of the proposed methods can be largely improved. The adaptive

testlet selection can be integrated here without any technical difficulty. The stopping criterion of

individual test-takers will be enforced. That is, the test lengths of different test-takers are different.
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