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INTRODUCTION

The unit root tests for panel data models have been widely discussed in econometrics literature

in the last two decades. This paper proposes a new unit root test for dynamic heterogeneous panel

data models. We here consider that each equation consists of a simple AR(1) type model with a

constant term. The method proposed by Im, Pesaran and Shin (2003, hereafter IPS) is well known

for the model considered here. It is an average of the Dickey and Fuller (1979, hereafter DF) t test

for a unit root of an individual time series.

In this paper we introduce two modifications to the IPS method. Firstly, we subtract the initial

data from the rest of data and intentionally suppress the constant term in constructing the DF t test

statistic for an individual series. We call it the suppressed constant term (SCT for short) modification.

Further, we call the modified IPS test in this way as the SCT-IPS test. By suppressing the constant

term, we expect that the variance of the test statistic becomes smaller and consequently it gives higher

power of the test.

Secondly, here we approximate the distribution of the SCT-IPS test with a normal distribution,

following the pioneering work of Abadir (1995). It may be noted that IPS obtain the bias and variance

correction terms for the test statistic for various values of T through extensive stochastic simulations,

where T is the time series dimension. Thus, our method is much simpler and would be easier for

generalization to complicated models.

Finite sample experiment shows that the distribution of the SCT-IPS test approximates a normal

distribution quite well. It also shows that it is more powerful than the IPS test when the root is a

local alternative, say 0.9.

The paper is organized as follows: The next section reviews the IPS model and gives modifica-

tions proposed in the paper. The third section gives some results of finite sample experiments. The

fourth section gives a few concluding remarks.

MODEL AND NEW APPROACH

Review of the IPS Method

In this paper, we consider the following model:

(1) yit = µi + uit, uit = ϕ1iui,t−1 + εit, i = 1, · · · , N, t = 1, · · · , T,
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where εit ∼ i.i.d.(0, σ2) and N is the cross-section dimension. We rewrite the model as

(2) yit = (1− ϕ1i)µi + ϕ1iyi,t−1 + εit,

or alternatively

(3) ∆yit = (1− ϕ1i)µi + βiyi,t−1 + εit,

where βi = ϕ1i − 1.

IPS consider the following testing problem:

(4) H0 : βi = 0, ∀i vs. H1 : βi < 0, i = 1, · · · , N1, and βi = 0, i = N1 + 1, · · · , N.

They estimate (3) for each i by the ordinary least squares (OLS), and construct a test statistic by

averaging t-statistic ti for βi of individual i

(5) tIPS =

1√
N

∑N
i=1(ti − E(ti))√
V ar(ti)

.

They further show that

(6) tIPS N,T→∞−−−−−→ N(0, 1).

In practice, IPS estimate E(ti) and V ar(ti) by simulation experiments for various values of T and

compute

(7) t̂IPS =

1√
N

∑N
i=1(ti − Ê(ti))√
V̂ ar(ti)

,

and test it against the critical values of N(0, 1). The experimental results in IPS show remarkably

good performance of t̂IPS even when N is very small, although their asymptotic result (6) assumes

that both N and T go to infinity.

New Method: Suppressed Constant Term

Here, we intentionally suppress (or ignore) the constant term in (2) and instead estimate the

following equation:

(8) yit = ϕ1iyi,t−1 + vit, vit = (1− ϕ1i)µi + εit.

We expect efficiency gain in estimation of ϕ1i by reducing the number of parameters to estimate.

However, we have the problem of omitted variable. Inclusion of the constant term is equivalent to

regressing yit − ȳi on yi,t−1 − ȳ−1,i. Here, we use y0i instead of ȳi. Thus, we subtract yi0 from both

sides.

(9) yit − yi0 = ϕ1i(yi,t−1 − yi0) + uit, uit = (−1 + ϕ1i)yi0 + (1− ϕ1i)µi + εit.

We note that ȳi and yi0 are both the unbiased estimator of E(yit). Actually, the unconditional

expectation of uit is 0.

It is important to note that under H0, (9) reduces to

(10) yit − yi0 = ϕ1i(yi,t−1 − yi0) + εit,
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It is a random walk process with the initial value of zero and there is no misspecification of the

model. The t-value for ϕ̂1i, denoted as tSCT
i , converges in distribution to the standard Dickey-Fuller

distribution for a unit root test:

(11) tSCT
i

T→∞, d−−−−−−→
(∫ 1

0
(W (r))2dr

)−1/2

(1/2)
(
[W (1)]2 − 1

)
,

where W (r) is the standard Brownian motion. The IPS type test statistic based upon tSCT
i proposed

in the present paper is given by

(12) tSCT−IPS =

1√
N

∑N
i=1(t

SCT
i − E(tSCT

i ))√
V ar(tSCT

i ).

It may be noted that, when H1 is true, the process (2) is stationary and the model without

constant term is misspecified. When ϕ1i < 1, the OLS estimator of ϕ̂SCT
1i in (9) converges to

ϕ̂SCT
1i

T→∞, p−−−−−−→ ϕ1i +
(1− ϕ1i)(1− ϕ2

1i)(µi − yi0)
2

σ2
i + (1− ϕ2

1i)(µi − yi0)2
(13)

∼ ϕ1i +
(1− ϕ1i)χ

2
1

1 + χ2
1

（if yi0 is normal）,(14)

where χ2
1 is the chi-square variate with a degree of freedom. Obviously, ϕ̂SCT

1i is not a consistent

estimator of ϕ1i and converges to a random variable. However, it is free from other parameters such

as µi and σ2
i when yi0 is normal. If we assume that 0 ≤ (µi − yi0)

2 < ∞, we have

(15) ϕ1i ≤ plimϕ̂SCT
1i < 1.

Since ϕ̂SCT
1i is inconsistent, its variance estimator is also inconsistent. Specifically,

T × ̂V ar(ϕ̂SCT
1i )

T→∞, p−−−−−−→ (1− ϕ2
1i) +

−2σ2
i (1− ϕ2

1i)(µi − yi0)
2(ϕ1i − ϕ2

1i)− (1− ϕ2
1i)

3(µi − yi0)
4

(σ2
i + (1− ϕ2

1i)(µi − yi0)2)2
(16)

∼ (1− ϕ2
1i) +

−2χ2
1(ϕ1i − ϕ2

1i)− (1− ϕ2
1i)χ

2
1

(1 + χ2
1)

2
（if yi0 is normal）.(17)

We note that T ̂V ar(ϕ̂SCT
1i ) also converges to a random variable, but it does not depend upon µi and

σ2
i , if normality of yi0 is assumed. Further, when 0 ≤ (µi − yi0)

2 < ∞, we have

(18) 0 < plim ̂TV ar(ϕ̂SCT
1i ) ≤ (1− ϕ2

1i).

Thus, the test based upon tSCT
i is consistent in spite of inconsistency of ϕ̂SCT

1i . Note that plimT ̂V ar(ϕ̂SCT
1i )

is smaller than the usual (1−ϕ2
1i). It may be the result of suppressing the constant term. It is interest-

ing to note that if (µi − yi0)
2 becomes larger, ϕ̂SCT

1i is away from the true ϕ1i, but variance estimator

T ̂V ar(ϕ̂SCT
1i ) becomes smaller. Consequently, ϕ̂SCT

1i may become a more accurate estimator in the

sense of mean squared error.

Normal Approximation

In this paper, we approximate the distribution of the test statistic as normal. The idea comes

from Abadir (1995), Gonzalo and Pitarakis (1998), and Abadir and Lucas (2000). They show that

under H0, the asymptotic distribution of tSCT
i , as described in (11), can be well approximated by a

normal distribution.
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We here investigate how the normal approximation works in finite samples through stochastic

simulations. Here, we consider the following model:

(19) yit = yi,t−1 + εit, εit ∼ N(0, 1), i = 1, · · · , T.

We estimate β̂i of ∆yit = αi + βiyi,t−1 + εit by the OLS and obtain the DF t-test statistic

(20) ti =
β̂i√
̂V ar(β̂i)

.

Note that the present model includes a constant term and ti statistic is not exactly the same as tSCT
i

discussed above.

Table 1 shows our experimental results of ti for various values of T . The number of replication is

10,000. We can see that moments of finite T are not significantly different from those of T = ∞ when

T=25 or larger. Next, we investigate how we can approximate the distribution with a normal variate.

Table 2 shows critical values of the true distribution and those derived from the approximated normal

distribution adjusted by their empirical mean and standard error given in Table 1. When T=25 or

larger, they are quite close each other, and it shows that the normal approximation works nicely when

testing for a unit root. It effectively explains why the IPS test works well even when N is very small.

Table 1: Moments of the DF t Statistic

m̂ean ŝtd ̂skewness ̂kurtosis
T = 10 -1.51056 1.053986 -0.35303 1.610014

T = 25 -1.51475 0.894556 0.10277 0.529845

T = 50 -1.53802 0.885599 0.108533 0.567139

T = 100 -1.53915 0.86726 0.198687 0.442314

T = 250 -1.51528 0.849224 0.222381 0.301295

T = 500 -1.5452 0.849533 0.209987 0.459631

T = 1000 -1.52833 0.84484 0.177472 0.296968

T = 10000 -1.52119 0.832317 0.205726 0.27437

T = ∞ -1.53296 0.840251 0.218155 0.334099

Note: The case of T = ∞ is analytical result by Nabeya (1999).

Having experimentally observed that the DF ti statistic is well approximated by a normal variate

for finite T , we try to approximate the DF tSCT
i with an appropriate normal distribution. As observed

in Table 1, various moments of finite T are not much different from those of T = ∞ when T=25

or larger. Thus, we approximate the theoretical distribution tSCT
i given by Abadir (1995) when

T = ∞, and we find that its distribution is well approximated by N(−0.433.0.9172) through extensive

experiments. Consequently, we compute the test statistic for panel data as

(21) tSCT−IPS =

1√
N

∑N
i=1(t

SCT
i + 0.433)

0.917
.

MONTE CARLO EXPERIMENTS

In this section, we investigate the performance of tSCT−IPS in comparison with t̂IPS for finite

samples through Monte Carlo experiments. Here, we consider the following data generating process:

(22) yit = (1− ϕ1i)µi + ϕ1iyi,t−1 + εit, εit ∼ i.i.d.N(0, 1)
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Table 2: Critical values of the DF t Distribution

Probability that ti is less than entry

0.01 0.025 0.05 0.1 0.5

T = 10 Approximation -3.9625 -3.5763 -3.2442 -2.8613 -1.5106

True Values -4.44015 -3.72955 -3.28912 -2.79648 -1.48034

T = 25 Approximation -3.5958 -3.2681 -2.9862 -2.6612 -1.5148

True Values -3.75 -3.33 -2.99 -2.64 -1.53

T = 50 Approximation -3.5982 -3.2738 -2.9947 -2.673 -1.538

True Values -3.59 -3.23 -2.93 -2.6 -1.55

T = 100 Approximation -3.5567 -3.2389 -2.9657 -2.6506 -1.5392

True Values -3.5 -3.17 -2.9 -2.59 -1.56

T = 250 Approximation -3.4909 -3.1797 -2.9121 -2.6036 -1.5153

True Values -3.45 -3.14 -2.88 -2.58 -1.56

T = 500 Approximation -3.5215 -3.2103 -2.9426 -2.6339 -1.5452

True Values -3.44 -3.13 -2.87 -2.57 -1.57

T = 1000 Approximation -3.4937 -3.1842 -2.918 -2.611 -1.5283

True Values -3.49069 -3.14155 -2.85919 -2.56567 -1.55477

T = 10000 Approximation -3.4575 -3.1525 -2.8902 -2.5879 -1.5212

True Values -3.41715 -3.08915 -2.83875 -2.54805 -1.55368

T = ∞ Approximation -3.4877 -3.1798 -2.9151 -2.6098 -1.533

True Values -3.42 -3.12 -2.86 -2.57 -1.57

Note: We calculated the true values for T = 10, 1000, 10000 by Monte Carlo experiment with 10,000

replications. The true values for T = 25, 50, 100, 250, 500 are drawn from Fuller (1976).

Here, we set µi = 500, ϕ1i = {1, 0.9}, ∀i, N = {1, 10, 50},T = {10, 50, 100}, the true lag order of the

process is assumed to be known. The number of replication is 10,000. The experimental procedure of

the SCT-IPS test is given as follows:

Step 1 Estimate ϕ1i of (yit − yi0) = ϕ1i(yi,t−1 − yi0) + Error by OLS for each i.

Step 2 Compute tSCT
i =

ϕ̂SCT
1i −1√
̂V ar(ϕ̂SCT

1i )
for each i.

Step 3 Compute tSCT−IPS as described in (21), and test it against N(0, 1) with the significance level

of 5%.

The results are given in Table 3. The empirical size of the SCT-IPS test is generally closed to

its nominal size of 5%. However, it tends to be undersized when T is small and N is large, that is,

when T=10 and N=50. On the other hand, the size of the IPS test is quite good for any configuration

of N and T . In terms of power, the SCT-IPS test mostly dominates the IPS test. It appears that

suppressing the constant term is quite effective in improving the power of the test.

The performance of the SCT-IPS test is remarkably good despite the fact that it employs the

uniform adjustment factors -0.433 and 0.917. The size distortion of the SCT-IPS test when T=10 and

N=50 is its only drawback. It may come from a uniform choice of the adjustment factors -0.433 and

0.917 even in this case.

Although not reported here, the power of the SCT-IPS test can be lower then the IPS test when

T is large and/or ϕ1i is far away from 1.0, say, ϕ1i=0.5. It can be the result of model misspecification
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Table 3: Size and Power Comparison of IPS Test and SCT-IPS Test

T

10 50 100

N Test size power size power size power

1 IPS 0.0569 0.0639 0.049 0.117 0.0469 0.3057

SCT-IPS 0.0488 0.0634 0.0476 0.1862 0.0515 0.4335

10 IPS 0.0583 0.097 0.0512 0.7579 0.0513 1

SCT-IPS 0.0407 0.1305 0.0561 0.9631 0.0523 1

50 IPS 0.0585 0.199 0.0535 1 0.0498 1

SCT-IPS 0.0193 0.302 0.0463 1 0.049 1

under H1. It may suggest that the suppressed constant term method is valid when the alternative is

closed to unity, say, 0.9 or 0.8.

CONCLUSION

This paper proposes the suppressed constant term modification to the IPS test for a unit root

in panel data models. It shows that the proposed method has greater power of test than the IPS

test. Another modification is the approximation of the test statistic as a normal variate. It greatly

simplifies the test procedure. However, there are still some rooms for improvement in terms of the

empirical size of the test in this approach. Generalizations to models with a drift term and/or higher

order lags will be examined in subsequent study.
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