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In the last decade, the work of Chambers and Quiggin (2000) inspired a remarkable research in

the production economics literature. Although the theory of state-contingent production is nowadays

well-established, the empirical implementation of this approach is still in an infancy stage. Among

others, there are two important difficulties: (a) the real number of states of nature may be very large

(creating ill-posed models); and (b) with the increasing number of states, it is very likely to find few

observations for some states of nature as well as collinearity problems. Some authors claim the urgent

need to develop robust estimation techniques to overcome these difficulties.

Golan et al. (1996) developed the Generalized Cross Entropy (GCE) and the Generalized Maxi-

mum Entropy (GME) estimators, which are widely used in linear and nonlinear regression models, in

particular in models with small size samples, non-normal errors and affected by collinearity, and in

models where the number of parameters to be estimated exceeds the number of observations available.

Later, Golan and Perloff (2002) defined the GME-α estimators by replacing the Shannon entropy

measure with Tsallis and Rényi entropies in the objective function of the GME estimator. So far there

have been only few attempts to estimate state-contingent production functions using the GME esti-

mator. However, looking at the advantages of these estimators it becomes clear that they could be the

solution for some problems in the estimation of technical efficiency with state-contingent production

frontiers, with the following additional important advantage: the traditional parametric assumptions

on the error distributions, specifically the error inefficiency component, are not needed.

In this work, we illustrate the performance of these estimators when compared with the Maxi-

mum Likelihood (ML) estimator through several simulation studies (including models affected by

collinearity and ill-posed models). Small mean squared error loss and small differences between the

true and the estimated mean of technical efficiency reveal that the GCE, GME and GME-α estimators

perform better than the ML estimator in most of the cases analyzed.
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State-contingent production frontier and maximum entropy estimators

The state-contingent production frontier model used in this work is defined by
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with 0 < b−1ps ≤ 1, as > 0 and 0 <
∑
p b
−1
ps ≤ P , for all s (s = 1, 2, . . . , S). The observed output is

denoted by q, S is the number of states of nature, P is the number of state-allocable inputs, K is the

number of exogenous variables, ds is a dummy variable that assumes the value 1 when the state s is

chosen and 0 otherwise, bps are the parameters that account for the possibility of output substitution

between states, xps are the state-allocable inputs, as are ex post realizations of an unobservable

random variable under Nature’s control, zk are the exogenous variables, αk are parameters to be

estimated, v is a random variable representing statistical noise and u ≥ 0 is a one-sided random

variable representing technical inefficiency; see Nauges et al. (2009) and O’Donnell et al. (2010) for

further details concerning this state-contingent production frontier model.

Considering the state-contingent production frontier model in (1) defined by the matricial form

ln q = f(X;β) + v − u,(2)

the reparameterization of the (R × 1) vector β and the (N × 1) vector v in the GME-α and GME

estimators follows the same procedure as in the traditional regression model. Each parameter is treated

as a discrete random variable with a compact support and 1 < M < ∞ possible outcomes and each

error is defined as a finite and discrete random variable with 1 < J < ∞ possible outcomes. The

reparameterization is given by
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with Z a (R×RM) matrix of support points and p a (RM × 1) vector of unknown probabilities, and

v = Aw =
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with A a (N ×NJ) matrix of support points and w a (NJ × 1) vector of unknown probabilities.

This traditional approach can be extended to the vector u. The reparameterization is similar to

the one conducted for v taking only into account that u is a one-sided random variable which implies

that the lower bound for the supports (with 1 < L < ∞ points) is zero for all error values (the full

efficiency case). The reparameterization of u can be defined by u = Bρ, with B a (N ×NL) matrix

of support points and ρ a (NL× 1) vector of unknown probabilities.

The maximum entropy principle is applied to estimate the unknown p, w and ρ vectors that

maximize

H(p,w,ρ) = He
α1

(β) +He
α2

(v) +He
α2

(u),(5)

subject to the model constraint and the additivity constraints

ln q = XZp+Aw −Bρ,
1R = (IR ⊗ 1′M )p,

1N = (IN ⊗ 1′J)w,

1N = (IN ⊗ 1′L)ρ,

(6)
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where ⊗ represents the Kronecker product, He
α1

(·) and He
α2

(·) are entropy measures (Shannon, Rényi

or Tsallis), and α1, α2 are the order of the entropy measure applied when e represents the Rényi or

Tsallis entropies.

The support matrices Z, A and B are defined by the researcher based on prior information.

Since the vector v is a two-sided random variable representing statistical noise, the supports in the

matrix A can be defined symmetrically and centered around zero, using the three-sigma rule with the

empirical standard deviation of the noisy observations. It is important to note that the traditional dis-

tributional assumptions concerning the error inefficiency component (Half Normal, Truncated Normal,

Exponential and Gamma distributions, among others) have been used in several empirical studies, since

it is expected a particular behavior in the distribution of technical inefficiency estimates (Kumbhakar

and Lovell (2000)). These distributional assumptions are not necessary with the maximum entropy

estimators, but the same beliefs can be expressed in the model through the error supports. In order to

specify the matrix B we suggest a similar approach as the one developed and tested by Campbell et

al. (2008) with Stochastic Frontier Analysis (SFA), which includes five points and assumes a negative

skewness for the estimates of technical efficiency. Campbell et al. (2008) recognize that the choice of

the supports is somewhat arbitrary and suggest the use of the mean efficiency of the Data Envelopment

Analysis (DEA) and SFA estimates to define the supports for the error inefficiency component. To

reduce the subjectivity in this support choice, we suggest a simpler approach in which the supports

of matrix B can be defined as

b′n = [0, 0.01, 0.02, 0.03,− ln(DEAn)]′,(7)

where DEAn represents the technical efficiency estimate provided by DEA for the production unit n

(n = 1, 2, . . . , N). Since in the DEA method all deviations from the production frontier are due to

inefficiency, this approach provides lower levels of efficiency than the SFA and the state-contingent

approach, and can be used to define an upper bound for the supports. Specific supports can be defined

for each production unit (the desirable approach) or, for simplicity, equal supports can be defined for

all observations considering DEAn as the lower technical efficiency estimate obtained by DEA in the

N observations.

In the context of state-contingent production and using only the Shannon entropy measure, the

GCE estimator can be defined as the minimization of

H(p,w,ρ, q3) = p′ lnp+w′ lnw + ρ′ ln(ρ/q3)(8)

subject to conditions (6), where the vector q3 represents prior information about the unknown ρ. With

the GCE estimator, the supports in matrix B can follow a similar structure as in (7), although with

equally spaced points in the range (0,− ln(DEAn)). We suggest that the set of subjective probability

distribution might also take the form q3 = [0.40, 0.30, 0.15, 0.10, 0.05]′ for each observation, where the

cross entropy objective shrinks the posterior distribution in order to have more mass near zero.

Simulation study

In this work we are particularly interested with models in which the ML estimator should be

avoided. Thus, particular attention is given to models with few observations in some states of nature

and models with a large number of states of nature (which are usually models affected by collinearity),

illustrating potential real problems when using the state-contingent production approach. Note that

few observations per state restrict the use of traditional estimators and, even with a reasonable number

of observations per state, the collinearity problem arises with an increasing number of states of nature.

The 2-norm condition number (i.e., the ratio of the largest singular value of X with the smallest

singular value) is considered to evaluate the collinearity in the design matrix. Since the 2-norm
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condition number increases with the number of (state and non state-allocable) inputs and considering

that the number of inputs lies between four and six in empirical studies, we define P = 2 and K = 3,

representing a very likely empirical scenario. Depending also on the number of observations per state,

we verify that models with a 2-norm condition number greater than 5× 103 are very likely for P ≥ 3

and K ≥ 4. We consider S = 2, 5, 10 to define the number of states of nature in this study.

The matrix X and the parameter vector β defined in (2) are generated according to the state-

contingent production frontier model in (1). The state-allocable inputs and the exogenous variables

are generated randomly using the absolute values of Normal distributions with means between one and

ten, and standard deviations equal to one. The parameters are generated using Uniform distributions,

namely b−1ps is generated using U(10−3, 1); for the constant parameter U(−4, 4) is used; and the

parameters of the exogenous variables are generated using U(−2, 2). The random variable representing

statistical noise, v, is generated using a standard Normal distribution. The one-sided random variable

representing technical inefficiency, u, is generated considering two possible distributions: (i) the Half

Normal distribution with zero mean and standard deviation σu = 0.1; (ii) the Exponential distribution

with parameter λ = 10. In case (i), we generate the Normal-Half Normal model, which is a common

model used in SFA. Note that the selected values for the parameters of the previous distributions are

arbitrary. Nevertheless, we choose values that we consider reasonable in empirical studies.

The supports in matrix Z are defined in the interval [0, 1] for the parameters of state-allocable

inputs and [−10, 10] for the other parameters. For all supports in Z, we consider five points (M = 5).

The support interval for the other parameters could be narrowed although it is defined in this way

to illustrate real cases where prior information is scarce. The supports in the matrix A are defined

symmetric and centered on zero, using the three-sigma rule with the empirical standard deviation

of the noisy observations. The number of support points are three in each support (J = 3). The

supports in the matrix B are defined using (7). In the Normal - Half Normal models, we consider

that the lowest estimate of technical efficiency obtained using DEA in the samples is approximately

67%. Note that, using the Half Normal distribution defined in (i) to generate the vector u, the

probability of finding a value greater than 0.3 is less than 1%. Thus, by considering the lowest

technical efficiency estimate obtained by DEA as 67%, we are defining the supports in matrix B by

b′n = [0, 0.01, 0.02, 0.03, 0.4]′. In the Normal - Exponential models, the supports in the matrix B are

defined by b′n = [0, 0.01, 0.02, 0.03, 0.8]′, considering that the lowest estimate of technical efficiency

obtained by DEA is 45%. In all the simulations performed with the Normal - Exponential models, the

maximum value generated in u is 0.62. Note that we are using conservative supports in both models

(i.e., supports with an upper bound larger than necessary), illustrating that DEA provides lower levels

of efficiency than the SFA and the state-contingent approach.

The GCE estimator is performed using the supports [0, 0.4] and [0, 0.8] respectively in the Normal

- Half Normal models and the Normal - Exponential models, with five equally spaced points in both

supports. We define two cases: the GCE1 with q3 = [0.40, 0.30, 0.15, 0.10, 0.05]′ and the GCE2 with

q3 = [0.50, 0.40, 0.05, 0.03, 0.02]′, where the cross entropy objective shrinks the posterior distribution

in order to have more mass near zero than in the first case.

The vectors u and v are replicated in order to create 50 different versions of each model. To

evaluate the performance of the estimators, we use two measures: the mean squared error loss (MSEL)

and the diference between the true and the estimated mean of technical efficiency (DMTE).

Some results

Under severe empirical conditions, a first conclusion is that the GCE, GME and GME-α estima-

tors perform, in general, better than the ML estimator in terms of MSEL and DMTE. Even in models

with only two states of nature, these estimators exhibit, in general, a better performance than the ML
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estimator, except in models with a small 2-norm condition number and with a reasonable number of

observations in each state of nature (i.e., a model with ideal empirical conditions).

As the number of observations per state decreases and/or the number of states of nature in-

creases, the 2-norm condition number increases substantially. In particular, the 2-norm condition

number can increase exponentially when the number of observations per state approaches to one,

illustrating the collinearity problem in the estimation of state-contingent production frontiers. As

expected, the MSEL of the ML estimator increases when the 2-norm condition number increases.

However, for the GCE, GME and GME-α estimators, the increase in MSEL is smaller and, in general,

the MSEL increases only slightly.

Generally the maximum entropy estimators have a lower DMTE than the ML estimator in most

of the models tested. Among the maximum entropy estimators, the GME estimator provides, in

general, the highest DMTE and the GME-α estimators generates the lowest DMTE. The GME and

the GME-α estimators provide higher values of DMTE in the Normal - Exponential models than in

the Normal - Half Normal models. This result is due to the different supports in the matrix B used

in these models, with different prior means: 91.2% for the Normal-Half Normal models and 84.2% for

the Normal-Exponential models. Taking into account the parameters defined in the Half Normal and

the Exponential distributions in this simulation study, the positive skewness value of the Exponential

distribution is much higher than the positive skewness value of the Half Normal distribution. Thus

with a lower prior mean and a higher degree of positive skewness, the GME and the GME-α estimators

generate higher values of DMTE in the Normal - Exponential models.

In the Normal - Half Normal models the GCE1 estimator provides, in general, a smaller DMTE

than the GCE2 estimator. However, in the Normal - Exponential models, the GCE2 estimator presents

a smaller DMTE than the GCE1 estimator. This discrepancy is due to the different vectors q3 used

in both estimators (the cross entropy objective in GCE2 shrinks the posterior distribution in order

to have more mass near zero than in GCE1). Since the positive skewness value of the Exponential

distribution is much higher than the positive skewness value of the Half Normal distribution in this

simulation study, the GCE2 (GCE1) estimator has a smaller DMTE than the GCE1 (GCE2) estimator

in the Normal - Exponential models (Normal - Half Normal models). However, it is important to note

that even with no fully correct prior beliefs expressed in vector q3 (i.e., for the GCE1 estimator in the

Normal - Exponential models and for the GCE2 estimator in the Normal - Half Normal models), the

differences in DMTE between the GCE1 and GCE2 estimators are small in most of the cases, revealing

the important feature of the GCE estimator that wrong prior beliefs do not have a significant impact

on the estimates (Golan et al. (1996)).

Concluding remarks

The results achieved in this work indicate that the maximum entropy estimators are powerful

alternatives to the ML estimator in the estimation of state-contingent production frontiers under

severe empirical conditions. Some advantages of these estimators seem to be clear: (1) the possibility

of considering easily prior information on the parameters and errors components; (2) the traditional

assumptions on the errors’ distributions are not necessary; and (3) these estimators can be used in

models with a large number of states of nature and even with only one observation per state (which

represent usually models affected by severe collinearity). Note that few observations per state restrict

the use of traditional estimators and, even with a reasonable number of observations per state, the

collinearity problem arises with an increasing number of states of nature. In these cases, researchers

can reduce the number of states (increasing the number of observations per state, but losing important

information) or use the maximum entropy estimators that are robust in the presence of collinearity

and can be used even if there is only one observation per state.
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