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1 Introduction

In multivariate analysis, there might be some incomplete sample. In this case, they cannot be analyzed

by an existing method and we might analyze the complete data except incomplete sample. Because

we throw information included incomplete sample in such analysis, we want to use that eãectively.

For analyzing these data, various statistical methods have been developed by Anderson and Olkin [1],

Dempster, Laird and Rubin [4], Srivastava [10] and Little and Rubin [6].

In this paper, we treat an asymptotic distribution for a latent root of a covariance matrix under

two-step monotone incomplete sample. Let x be distributed as Np+q(ñ;Ü), x(1) be the vector of the

årst p elements of x and x(2) be the vector of the residual q elements of x. Suppose we have N

observations on x(1), n observations on x(2). Therefore we have the sample†
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where the symbol Édenotes the missing sample.
Anderson and Olkin [1] consider a two-step monotone sample and derive the maximum likelihood

estimator(MLE) ñ̂ and Ü̂ for the mean vector ñ and the covariance matrix Ü. Kanda and Fujikoshi

[5] investigate some fundamental properties of the MLE, and indicate that the MLE ñ̂ is unbiased

but the MLE Ü̂ is not unbiased. In general, it becomes diécult to derive the exact properties of these

estimators except for some special cases. They study the asymptotic properties. Chang and Richards

[2] derive a stochastic representation for the exact distribution of the MLE ñ̂ under two-step monotone

sample. They obtain ellipsoidal conådence region for ñ. Chang and Richards [3] deal with tests for

the mean vector ñ and the covariance matrix Ü.

For principal component analysis, we consider the asymptotic distribution for the ã-th largest

latent root of the covariance matrix under two-step monotone incomplete sample. We represent the

estimator for the covariance matrix which can be unitedly treated in Section 2. In Section 3, the

asymptotic distribution for the ã-th largest latent root is derived. The accuracy is investigated by

numerical simulation in Section 4. Section 5 concludes the paper.

2 United estimator _S for covariance matrix

For covariance matrix, there are some estimators which are the MLE, proposed by Kanda and Fujikoshi
[5] and an unbiased estimator. Since we want to treat them unitedly, the united estimator _S is
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composed in this section. Let ñx
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We could rewrite A11;N =
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ã=1

ê
x(1)ã Ä ñx(1)
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as follows:

A11;N = A11;n +B1 +B2 = A11;n +B:

We could write estimators for the covariance matrix as follows:
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1
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When é= 0 and c0 = 0, _S11, _S12 and _S22 are the maximum likelihood estimator (MLE) ( See

Chang and Richards [2].). They are the estimator (KFE) proposed by Kanda and Fujikoshi [5] when

é= 1 and c0 = 0, and they are the unbiased estimator (UBE) by Tsukada [11] when é= 1 and

c0 = (N Ä n)f(p+ 1)(p+ 2)Ä ng=f(N Ä 1)(nÄ pÄ 2)(nÄ pÄ 1)g.

3 Asymptotic distribution for latent root of covariance matrix

Suppose that the population covariance matrix represents

Ü= ÄÉÄ0;

where Ä is an orthogonal matrix and É = diag(ï1; : : : ; ïp+q) with ï1 > ÅÅÅ> ïp+q: The ã-th largest
latent root _lã of _S is expanded as follows:

_lã = ïã+ _cãã+Op(N
Ä1);

where _C = ( _cij) = Ä0
ê
_S ÄÜ

ë
Ä. We have to calculate the moments of _cãã to obtain the asymptotic

distribution. From Proposition 4.1 by Chang and Richards [2],†
A11;n A12
A21 A22

!
òWp+q(nÄ 1;Ü); B òWp(N Ä n;Ü11)

and they are mutually independent. Letting8><>: A11;n = (nÄ 1)Ü11 +
p
nÄ 1 U11;n;

A12 = (nÄ 1)Ü12 +
p
nÄ 1 U12;

A22 = (nÄ 1)Ü22 +
p
nÄ 1 U22;
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and B = (N Ä n)Ü11 +
p
N Ä nV , we have the expansion of cãã as follows:

cãã =
N

(N Äé)pnÄ 1ç
0
ãUçãÄ

N Ä n
(N Äé)pnÄ 1å

0
ã(12 äU11;n)åã

+

p
N Ä n
N Äé å

0
ã(12 ä V )åã+Op((N Äé)Ä1);

where çã is the ã-th column of Äand separated into p components and q components as (ç
0
1ã;ç

0
2ã)

0,

U =

†
U11;n U12
U21 U22

!
; â =

†
Ip O
O Ü21Ü

Ä1
11

!
; 12 =

†
1 1
1 1

!
and åã = âçã:

Since A = (nÄ1)Ü+pnÄ 1 U òWp+q(nÄ1;Ü) and B = (NÄn)Ü11+
p
N Ä n V òWp(NÄn;Ü11),

we have

E[U ] = O(p+q)Ç(p+q); E[U11] = E[V ] = OpÇp(1)

and the expectation of the latent root _lã is

E[ _lã] = ïã+O(N
Ä1):(2)

Next we calculate an asymptotic variance for _lã. Since the expansion of c2ãã is

c2ãã =
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à
å0ã(12 ä U11;n)åã
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â
]. To calculate these expectations, we use the following lemma.

Lemma 3.1 Suppose that A has Wp(n;Ü) and M is a constant matrix,

E[AMA] = p2ÜMÜ+ pÜM 0Ü+ ptr(MÜ)Ü:

Therefore we obtain the following theorem.

Theorem 3.1 Suppose the latent root ïã of the covariance matrix Ü is distinct. The asymptotic

distribution for the sample latent root
p
N Äé (_lã Ä ïã) of the sample covariance matrix _S is the

normal distribution with the mean 0 and the variance û2E, where

û2E =
N2

(N Äé)(nÄ 1)(2ï
2
ã)Ä

(N Ä n)(N + 1)
(N Äé)(nÄ 1)

n
2(ïãÄç02ãÜ22Å1ç2ã)2

o
:

Collorary 3.1 When the sample size N is suéciently large, the sample latent root
p
N Äé(_lãÄïã)

is asymptotically distributed as the normal distribution with the mean 0 and the variance û2A, where

ú= (N Ä n)=N and

û2A =
1

1Äú(2ï
2
ã)Ä

ú

1Äú
n
2(ïãÄç02ãÜ22Å1ç2ã)2

o
:

Remark 1. When there is no missing sample, that is, ú= 0, the asymptotic variance of the sample

latent root is 2ï2ã. This is the case of the complete sample and the asymptotic variance is corresponding

to the result in complete sample.

Remark 2. The asymptotic distribution for the latent root using MLE and those for the latent root

using KFE and UBE are diãerent, but it is the same as those using three estimator when the sample

size N is suéciently large.
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4 Numerical simulation

In this section we investigate the accuracy for the asymptotic distribution by numerical simulation. We

treat the result for Collorary and assume that the population distribution is the normal distribution

N8(0;Ü), where

É = diag(128; 64; 32; 16; 8; 4; 2; 1);

Ä =

0BBBBBBBBBBBB@

0:647 Ä0:719 Ä0:217 0:007 0:082 0:084 0:057 0:026
0:235 0:471 Ä0:802 Ä0:247 0:003 0:087 0:088 0:057
0:251 0:080 0:393 Ä0:834 Ä0:256 0:003 0:087 0:084
0:267 0:118 0:011 0:363 Ä0:843 Ä0:256 0:003 0:082
0:284 0:161 0:065 Ä0:009 0:363 Ä0:834 Ä0:247 0:007
0:302 0:209 0:130 0:065 0:011 0:393 Ä0:802 Ä0:217
0:321 0:262 0:209 0:161 0:118 0:080 0:471 Ä0:719
0:342 0:321 0:302 0:284 0:267 0:251 0:235 0:647

1CCCCCCCCCCCCA
;

Ü = ÄÉÄ0 =

0BBBBBBBBBBBB@

88:24 3:413 14:12 16:00 15:59 14:56 13:27 11:78
3:413 42:90 3:194 9:774 11:45 11:78 11:67 11:30
14:12 3:194 25:07 6:175 10:05 11:35 11:90 12:16
16:00 9:774 6:175 18:06 9:278 11:80 13:02 13:84
15:59 11:45 10:05 9:278 16:06 12:49 14:62 16:14
14:56 11:78 11:35 11:80 12:49 17:02 16:49 18:96
13:27 11:67 11:90 13:01 14:62 16:49 20:52 22:29
11:78 11:30 12:16 13:85 16:14 18:96 22:29 27:14

1CCCCCCCCCCCCA
:

The number of simulation is a thousand hundred and p = q = 4. We establish n = 200 and change

the missing ratio ú, i.e., the number of missing sample N Ä n. Table 1 denotes the result in the case
of ú= 10:3%. The value in parentheses is a relative error, the underlined value denotes the estimator

that the relative error is the smallest, and the notation xy denotes the value xÇ10y. The expectation
of the latent root using MLE is closest to the population latent root when there is a positive bias.

When there is a negative bias oppositely, the expectation of the latent root using UBE is closest. As

for the variance, that of latent root using MLE is small though those of latent root using KFE and

UBE are almost the same values and their relative errors are small. The result in the case of ú= 25:1%

represents Table 2. There is a similar tendency as Table 1. The relative error has decreased compared

with Table 1 because total sample size N increase.

For the expectation and the variance, the value becomes small from the largest latent root to

the smallest latent root but the relative error grows.

5 Conclusion

We obtain the asymptotic distribution for the latent root of the covariance matrix under two-step

monotone incomplete sample. The validity of the result is shown by numerical simulation.

We ånd that the estimator using MLE is good for the large latent roots and the asymptotic

variance of the estimator using MLE is smallest. Since the estimator of the latent root has a bias for

the complete sample, we will correct the asymptotic bias in next step.

And it is found from Collorary that the asymptotic variance becomes small for the complete

sample by using the missing sample.

As an application, we could asymptotically test the hypothesis that the population latent root

is equivalent to a constant, i.e., H0 : ïã = ï0(constant), using that the criterion
p
N Äé(lãÄï0)=ûA

is asymptotically distributed as the standard normal distribution.
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N = 223, n = 200, N Ä n = 23, ú= 10:3%
Expectation Variance

ã MLE KFE UBE MLE KFE UBE TRUE

1
128.4 128.9 129.0 148.1 149.4 149.4

149.7
(0.287%) (0.739%) (0.742%) (-1.059%) (-0.165%) (-0.164%)

2
63.60 63.89 63.89 36.56 36.89 36.89

37.58
(-0.624%) (-0.176%) (-0.171%) (-2.719%) (-1.840%) (-1.839%)

3
31.60 31.74 31.75 9.055 9.137 9.137

9.441
(-1.247%) (-0.802%) (-0.796%) (-4.088%) (-3.222%) (-3.220%)

4
15.71 15.78 15.78 2.270 2.291 2.291

2.372
(-1.801%) (-1.359%) (-1.351%) (-4.294%) (-3.430%) (-3.427%)

5
7.811 7.846 7.848 0.5951 0.6004 0.6006

0.6267
(-2.365%) (-1.925%) (-1.900%) (-5.053%) (-4.196%) (-4.172%)

6
3.874 3.892 3.894 0.1494 0.1508 0.1509

0.1600
(-3.138%) (-2.701%) (-2.657%) (-6.614%) (-5.771%) (-5.689%)

7
1.924 1.933 1.934 3:763Ä2 3:797Ä2 3:800Ä2

4:000Ä2
(-3.784%) (-3.351%) (-3.306%) (-5.935%) (-5.086%) (-4.998%)

8
0.9517 0.9560 0.9564 9:367Ä3 9:452Ä3 9:460Ä3

1:000Ä2
(-4.831%) (-4.403%) (-4.358%) (-6.329%) (-5.484%) (-5.396%)

Table 1: Expectaion and Variance (Collorary)

N = 267, N Ä n = 200, n = 67, ú= 25:1%
Expectation Variance

MLE KFE UBE MLE KFE UBE TRUE

1
128.3 128.8 128.8 127.9 128.9 128.9

129.4
(0.264%) (0.641%) (0.650%) (-1.123%) (-0.379%) (-0.374%)

2
63.66 63.90 63.91 32.06 32.30 32.31

32.74
(-0.533%) (-0.159%) (-0.147%) (-2.083%) (-1.345%) (-1.341%)

3
31.66 31.78 31.79 8.029 8.090 8.090

8.297
(-1.049%) (-0.677%) (-0.663%) (-3.224%) (-2.495%) (-2.490%)

4
15.76 15.82 15.82 2.030 2.045 2.045

2.103
(-1.507%) (-1.137%) (-1.120%) (-3.484%) (-2.757%) (-2.751%)

5
7.828 7.858 7.862 0.5809 0.5853 0.5856

0.6077
(-2.149%) (-1.781%) (-1.720%) (-4.402%) (-3.682%) (-3.631%)

6
3.875 3.890 3.894 0.1495 0.1506 0.1509

0.1600
(-3.121%) (-2.757%) (-2.651%) (-6.553%) (-5.849%) (-5.650%)

7
1.924 1.932 1.934 3:763Ä2 3:791Ä2 3:800Ä2

4:000Ä2
(-3.784%) (-3.422%) (-3.313%) (-5.932%) (-5.223%) (-5.010%)

8
0.9517 0.9553 0.9563 9:367Ä3 9:438Ä3 9:459Ä3

1:000Ä2
(-4.831%) (-4.473%) (-4.366%) (-6.328%) (-5.622%) (-5.410%)

Table 2: Expectation and Variance (Collorary)
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