
Path Analysis for Recursive Generalized Linear Model Systems

Eshima, Nobuoki
Oita University, Department of Biostatistics
1-1, Idaiga-oka, Hasama
Yufu 879-5593, Japan
E-mail: eshima@med.oita-u.ac.jp

Tabata, Minoru
Osaka Prefecture University, Department of Mathematical Sciences
1-1,Gakuencho, Naka
Sakai 599-8531, Japan

Ohyama, Tetsuji
Oita University, Department of Biostatistics
1-1, Idaiga-oka, Hasama
Yufu 879-5593, Japan

1 Introduction

Path analysis is usually carried out in causal systems of continuous variables, i.e. Linear Structural
Equation Model (LISREL) (Bentler & Weeks, 1980). In LISREL approach, causal relationships among
variables concerned are described by a path diagram, and the relationships are translated into linear
equations of the variables. In comparison with path analysis of continuous variables, that of categori-
cal variables is complex, because the causal system under consideration cannot be described by linear
regression equations. Hagenaars (1998) made a discussion of path analysis of categorical variables by
using a loglinear model approach. Although the approach is an analogy to LISREL, the discussion
of the direct and indirect e¤ects was not made. In path analysis with categorical variables, it is a
question how the e¤ects are measured. Eshima et al. (2001) proposed a method of path analysis of
categorical variables by using logit models. In this approach, the direct and indirect e¤ects of variables
are discussed according to log odds ratios and the average e¤ects are de�ned for summarizing them;
however the interpretation of the average e¤ects was not provided. Kuha & Goldthorpe (2010) pro-
posed a path analysis method according to log odds ratios; however increasing categories in variables
makes the path analysis to be complex.
This paper proposes a basic method for path analysis in causal systems with generalized linear models
(GLMs). First, the odds ratio in GLMs is discussed and the interpretation in entropy is given.
Second, the total, direct and indirect summary e¤ects in GLMs are discussed by using log odds ratios,
and to standardize the e¤ects the entropy crenelation coe¢ cient (ECC) or the entropy coe¢ cient of
determination in GLMs is employed. A numerical example is given to illustrate the present approach.
Finally, discussions and conclusions to this study are provided.

2 An Example

The data for an investigation of factors in�uencing the primary food choice of alligators are analyzed
with a generalized logit model (Agresti, 2002; pp. 268-271). In this example, explanatory variables are
X(L): lakes where alligators live, {1. Hancock, 2. Oklawaha, 3. Tra¤ord, 4. George}; and X(S): sizes
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of alligators, {1. Small, 2. Large}; and the response variable is Y : primary food choice of alligators,
{1. Fish, 2. Invertebrate, 3. Reptile, 4. Bird, 5. Other}. Lake X(L) is a �xed variable, and it can be
assumed that X(L) precedes Size of alligators X(S) and that X(L) and X(S) a¤ect Food Y . The path
diagram is shown in Figure 2.1.

Y
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Figure 2.1. Path Diagram of X(L), X(S), and Y

Let us consider the e¤ects of X(L) and X(S) on Y . The following dummy variables are introduced for
the categorical variables. Let

X(L)i =

(
1 (X(L) = i)

0 (X(L) 6= i)
(i = 1; 2; 3; 4); X(S)j =

(
1 (X(S) = j)

0 (X(S) 6= j)
(j = 1; 2)

and

Yk =

(
1 (Y = k)

0 (Y 6= k)
(k = 1; 2; 3; 4; 5) .

Then, the explanatory variables X(L), X(S) and the response variable Y are identi�ed with the

correspondent dummy random vectors X(L) =
�
X(L)1; X(L)2; X(L)3; X(L)4

�T , X(S) =
�
X(S)1; X(S)2

�T
and Y = (Y1; Y2; Y3; Y4; Y5)

T , respectively. In this analysis, the following generalized logit model is
assumed:

f(yjx) =
exp

n
yT
�
�+BT

(L)x(L)+B
T
(S)x(S)

�o
P
y exp

n
yT
�
�+BT

(L)x(L)+B
T
(S)x(S)

�o
where �, B(L), and B(S) are 5� 1, 5� 4 and 5� 2 regression parameter matrices, respectively.

The present paper proposes a path analysis method for summarizing the e¤ects of polytomous
explanatory variables on response variables, and the analysis is applied to this example.
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3 Log odds and entropy

LetX and Y be a p�1 explanatory variable vector and a response variable respectively, and let f(yjx)
be the conditional probability or density function of Y given X = x. The conditional probability or
density function f(yjx) is assumed to be the following exponential family distribution:

f(yjx) = exp
n
y��b(�)
a(') + c(y; ')

o
; (3.1)

where � and ' are parameters, and a(') (> 0), b(�) and c(y; ') are speci�c functions. Let
�T = (�1; �2; :::; �p)

T : Since � is a function of � = �Tx through a link function h(u), for
simpli�cation the function is denoted by � = �(�Tx). Let us consider the following log odds ratio:

logOR(x;x0; y; y0) = log
f(yjx)f(y0jx0)
f(y0jx)f(yjx0) =

1
a(')(y � y0)

�
�(�Tx)� �(�Tx0)

�
;

where x0 and y0 are baselines of X and Y , respectively. Since

logOR(x;x0; y; y0) = f� log f(y0jx)� (� log f(yjx))g�f� log f(y0jx0)� (� log f(yjx0))g ; (3:2)

the log odds ratio (3.2) is the decrease of the uncertainty of response Y in explanatory variable
vector X, and the quantity can be interpreted as the e¤ect of x on y, where x0 and y0 are baselines
of X on Y , respectively. For levels of the factor vector X = x1;x2; : : : ;xK , the means of X and Y
are de�ned as follows:

�X �E(X) =
PK
k=1 xk
K and �Y �E(Y ) =

PK
k=1 E(Y jX=xk)

K .

If X is random, the above means are the usual expectations. When the baselines are replaced by �X
and �Y , respectively, the e¤ect of x on y is de�ed by

logOR(x;�X ; y; �Y ) � 1
a(')(y � �Y )

�
�(�Tx)� �(�T�X)

�
.

The e¤ect of variable X on Y is de�ned on the basis of the following basic measure of predictive
power:

E(logOR(X;�X ;Y; �Y )jX) � 1
a(')E

�
�Y
�
�TX

�
� �Y )

�
�(�TX)� �(�T�X)

��
= Cov(�;Y )

a(') . (3.3)

The above quantity can be expressed by a symmetric type of the Kullback information between
GLM with (3.1) and the null model with � = 0 (Eshima & Tabata, 2007), so we denote (3.3) as
KL (X; Y ) in this paper. It is useful to standardize the information by ECC or ECD. In GLM with
random component (3.1), ECC is

ECorr(X;Y ) = Cov(Y;�)p
Var(Y )

p
Var(�)

,

and, it can be interpreted as the proportion of the explained entropy of response Y . On the other
hand, ECD is given by

ECD(X;Y ) = Cov(Y;�)
Cov(Y;�)+a(') .

Another expression of ECD is as follows:

ECD(X;Y ) = Cov(Y;�)=a(')
Cov(Y;�)=a(')+1 =

KL(X;Y )
KL(X;Y )+1 .

The measure is interpreted as the proportion of explained variation of Y in entropy (Eshima &
Tabata, 2010). In this paper, ECD is mainly used for assessing the e¤ects of explanatory variables.
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4 E¤ect Analysis in Recursive GLM systems

For simplicity of the discussion, the path system of variables Xi (i = 1; 2; 3) shown in Figure 4.1 is
considered, and by using a similar discussion as the previous section we propose a method for e¤ect
decomposition. In the recursive system, Xi precedes Xi+1 (i = 1; 2), and we discuss the e¤ects of X1
and X2 on X3. Let �i be the expectations of Xi (i = 1; 2; 3). Then, for a GLM with the conditional
density or probability function of X3 given (X1; X2) = (x1; x2) (4.1), the total e¤ect of (X1; X2) =
(x1; x2) on X3 = x3 can be de�ned by using the following odds ratio:

f(x3jx1;x2) f(�3j�1;�2)
f(�3j�1;x2)f(x3jx1;�2)

=
(x3��3)(�(�T (x1;x2))��(�T (�1;�2)))

a(') .

By taking the expectation of the above e¤ect, we have the total e¤ect of (X1; X2) on X3:

Cov(�(�T (X1;X2));X3)
a(') .

Let �2(x1) and �3(x1) be the conditional expectations X2 and X3 given X1 = x1, respectively. The
total e¤ect of X1 = x1 on X3 = x3 is de�ned by

f(x3jx1;x2) f(�3j�1;�2)
f(�3j�1;x2)f(x3jx1;�2)

� f(x3jx1;x2) f(x3j�1(x1);�2(x1))
f(x3j�1(x1);x2)f(x3jx1;�2(x1))

=
(x3��3)(�(�T (x1;x2))��(�T (�1;�2)))

a(') � (x3��3(x1))(�(�T (x1;x2))��(�T (x1;�2(x1))))
a(') .

The second term of the above equation is de�ned as the total e¤ect of X2 = x2 on X3 = x3 given
X1 = x1, because X1 precedes X2. By taking the expectation of the right hand side of the above
equation, the total e¤ect of X1 on X3 is given by

Cov(�(�T (X1;X2));X3)
a(') � Cov(�(�T (X1;X2));X3jX1)

a(') .

The second term implies the total e¤ect of X2 on X3, i.e.

Cov(�(�T (X1;X2));X3jX1)
a(') .

The direct e¤ect of X1 = x1 on X3 = x3 can be discussed based on the following odds ratio given
X2 = x2:

f(x3jx1;x2) f(�3jx1;�2)
f(�3jx1;x2)f(x3jx1;�2)

=
(x3��3(x2))(�(�T (x1;x2))��(�T (�1;x2)))

a(') .

By taking the conditional expectation of above e¤ect we have

Cov(�(�T (X1;X2));X3jX2)
a(') .

Standardizing the above e¤ects based on ECD we de�ned the total e¤ect of X1 and X2 on X3, the
total, direct and indirect e¤ects of X1 on X3, and the total e¤ect of X2 on X3 as follows:

eT ((X1; X2) �! X3) =
Cov(�(�T (X1;X2));X3)

Cov(�(�T (X1;X2));X3)+a(')
,

eT (X1 �! X3) =
Cov(�(�T (X1;X2));X3)�Cov(�(�T (X1;X2));X3jX1)

Cov(�(�T (X1;X2));X3)+a(')
,

eD (X1 �! X3) =
Cov(�(�T (X1;X2));X3jX2)
Cov(�(�T (X1;X2));X3)+a(')

, eI (X1 �! X3) = eT (X1 �! X3)� eD (X1 �! X3),

eT (X2 �! X3) =
Cov(�(�T (X1;X2));X3jX1)
Cov(�(�T (X1;X2));X3)+a(')

.
In the present path analysis, the total and direct e¤ects are positive. The approach can be extended
to a general recursive GLM system with more than three variables.
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Figure 4.1. Path Diagram of X1, X2, and X3

Analysis of the Example. According to the above estimates we have
Cov(�; Y ) = 0:329 (SE = 0:082); dCov

�
�; Y jX(L)

�
= 0:101 (0:045)

and dCov
�
�; Y jX(S)

�
= 0:260 (0:072).

From the above estimates we have the e¤ects of Lake (X(L)) and Size (X(S)) on Food (Y ).

eT
�
(X(L); X(S)) �! Y

�
= 0:329

0:329+1 = 0:248,
eT
�
X(L) �! Y

�
= 0:329�0:101

0:329+1 = 0:172,
eD
�
X(L) �! Y

�
= 0:260

0:329+1 = 0:196, eI
�
X(L) �! Y

�
= 0:329�0:101�0:260

0:329+1 = �0:02 4.

eT
�
X(S) �! Y

�
= 0:101

0:329+1 = 0:076.

5 Discussion

In the usual path analysis of continuous variable systems, the regression coe¢ cients and the correlation
coe¢ cients of factors and response variables are decomposed into components, and path analysis is
easily carried out; however for categorical variable systems such a technique cannot be applied. In
path analysis of categorical variables using logit and loglinear models (Goodman, 1973a, b; Hagenaars,
1998), the e¤ects in causal systems were assessed with odds ratios; however the discussion of the direct
and indirect e¤ects did not made. In the present paper, a path analysis approach with ECD is proposed
for measuring the factor e¤ects in GLMs. As shown in an example, the results of path analysis provide
summaries of the e¤ects of explanatory variables based on log odds ratios. A similar approach can
also be made with ECC. By using the present approach, the direct and indirect e¤ects of factors on
response variables can be calculated in all GLMs. For LISREL the ordinary path analysis method may
be better than the present approach; however the present path analysis approach will have potential
for a wide applicability in practical analyses of recursive GLM causal systems, especially for categorical
variables.
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RÉSUMÉ (ABSTRACT)

The objective of the present paper is to propose a path analysis method for causal systems with
generalized linear models (GLMs). First, the usual path analysis method for linear equation models
is reviewed. Second, a brief introduction of the entropy correlation coe¢ cient (ECC) and the entropy
coe¢ cient of determination (ECD) is given, and the e¤ects of factors in GLMs are discussed by using
ECC and ECD. Third, a path analysis method for recursive GLM systems is proposed. A numerical
illustration is also given to demonstrate the present approach.
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