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Introduction 

 

In ordinary least squares regression, dimensionality is a sensitive issue. As the number of independent 
variables approaches the sample size, the least squares algorithm could easily fail, i.e., estimates are not 
unique or very unstable, (Draper and Smith, 1981). There are several problems usually encountered in 
modeling high dimensional data, including the difficulty of visualizing the data, slow convergence for 
models with numerous parameters, bias in variable selection when some important variables are tentatively 
dropped at some point during the search process, and the problem of multicollinearity that has a number of 
potential serious effects on the least squares estimates of the regression coefficients (Montgomery and Peck, 
1982).  

 
Multicollinearity happens when two or more predictors are highly correlated resulting to undue 

influence on the quality of estimates of certain parameters. The presence of multicollinearity inflates the 
standard errors of the parameter estimates, hence, any small change in the data values causes big change in 
the estimated functional form. It also makes the estimates of the coefficient unreliable (Curto and Pinto, 
2007). The dependent variable will further have weaker sensitivity to variation among the independent 
variables. Thus, multicollinearity makes it difficult to assess the relative importance of predictor variables in 
the model.   

 
In dealing with high dimensional data in regression analysis, more than the full set of principal 

components of the independent variables are used as the explanatory variables instead of the original 
variables. However, since only a subset of the principal components is used in the regression model, there is 
generally a loss in information resulting to the deterioration of the predictive ability of the function compared 
to the model generated using the ordinary least squares linear regression using all independent variables 
(Dunteman, 1989).  

 
Modeling in a high dimensional data often leads to the issue of specification bias and multicollinearity. 

Instead of the parametric framework in classical regression, the nonparametric regression on the principal 
component of the independent variables is explored in this paper to mitigate the deterioration of predictive 
ability of the model while dealing with high dimensionality. The lost information on the excluded predictors 
due to selection of important variables is compensated by a flexible functional form of the equation.  
Furthermore, because of the orthogonality of the principal components, PCR can be postulated as an additive 
model which is comparably easy to interpret than models that accounts for the independent variables 
simultaneously.   
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Nonparametric Principal Components Regression 

 
A two-step procedure is proposed to estimate the regression model. The first step chooses the principal 

components to be included in the model. The second step fits the best smooth function using the kernel 
estimation.  The predictive performance of the model is evaluated through a simulation study.   

 
Suppose that x can be represented by the principal components z of the original variables. Then, we fit 

the model   
yi = f1(zi1) + f2(zi2) +…+ fk(zik) + εi  for i=1,2,…,n, k<p   (1) 

Because of the orthogonality of the components z, (1) satisfies the requirements of an additive model, i.e., 
each term accounts for the individual, non-overlapping contribution of the components z1, z2, .., zk.   The z1, 
z2, .., zk components to be included will be chosen based on their contribution in capturing the variance 
contained in the original set of variables (x1, x2, .., xp)   
 

The functions f1, f2, .., and fk will be estimated through the backfitting algorithm. The component 
associated with the largest eigenvalue should be entertained first in the algorithm below: 
 

Step 1. Select the smoothing constant h. If h is set close to 0, )(ˆ zf  converges to the interpolating splines, 

but when h is very large, the function would still exhibit roughness or will simply interpolate the raw 
data. The smoothing constant is chosen using the cross validation function.  

Step 2. Using the Gaussian kernel, compute )(ˆ zf  that minimizes the penalized sum of squares given by 

max
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i i dttfhzfyhSS  , where z is the component associated with the largest 

eigenvalue.   

Step 3. Given )(ˆ zf , compute the residuals )(ˆ*
ii zfyei .   

Step 4. Iterate from Step 2, this time using the component with second largest eigenvalue.  In Step 3, the 
residuals will be computed with the estimates from the first two components.  Continue the 
iteration until all the components to be included are entertained into the model.  

 
The optimality of the backfitting algorithm is established in the literature, see for example, Opsomer (2000), 
and Mammen, et. al. (1999) for details. 
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Simulation Study 

 
The proposed procedure is evaluated through a simulation study. The simulation scenarios will consider 

a fairly general setting for the existence of the multicollinearity problem as well as for high dimensionality. 
The comparison between the parametric and nonparametric principal components regression will focus on 
predictive performance only since this is the main issue being addressed in proposing the nonparametric over 
the parametric model.   

  
There are several factors considered in the simulation study: dimensionality of the data; the level of 

multicollinearity; the form of the model; and the predictive ability of the model.  There are 15 simulation 
settings and for each of setting, replicate data sets are generated. For datasets with multicollinearity, Xp+1 is 
generated as a function of the Xp and c*εp, where c is a constant to ensure that the independent variables are 
collinear but not necessarily a perfect linear relationship. The degree of multicollinearity is adjusted by 
multiplying the constant c to the error term. The higher the value of c, the weaker the multicollinearity will 
be. Y is computed as a linear and nonlinear function of the Xs and ε.  To adjust the predictive ability of the 
model, a constant l is again multiplied in the error term. The higher the value of the l, the lower the value of 
the R2, thus, the lower the predictive ability of the model. Model fit is simulated to account for possible 
misspecification usually encountered in actual modeling. 
 
Results and Discussion 

  
When n<p, both the parametric principal component regression (PCR) and nonparametric PCR (NPCR) 

are compared to ordinary least squares (OLS) that includes all independent variables.  On the otherhand, 
when n>p, only the parametric and nonparametric PCR are compared. 
 

Effect of the Functional Form of the Data-Generating Function 

 
When the dependent variable is a linear combination of the independent variables, the mean absolute 

percentage error (MAPE) of PCR and NPCR are generally lower than those from the OLS (including all 
variables, n<p). Furthermore, MAPE for NPCR is smaller than in PCR and OLS regardless of the form of the 
data-generating model. The smallest MAPE is observed in the data set generated with a nonlinear data-
generating model and estimated through NPCR, see Table 1 for details.  

Table 1.  Comparison of MAPE from PCR and NPCR by Data-Generating Function 

Data Generating Function Average MAPE Proportion of with Smallest MAPE 
OLS PCR NPCR OLS PCR NPCR 

Linear  42.03% 31.92% 26.55% 22.20% 0.00% 77.80% 
Non-linear (Exponential Family)  12.71% 7.59% 5.63% 4.30% 0.30% 95.30% 

 
MAPE is always smaller for datasets with nonlinear combination of the Xs than datasets with linear 

combination of the Xs except when OLS with all independent variables is used.  On the contrary, the 
highest MAPE are observed when OLS is used in a dataset where the dependent variable is simulated as a 
linear combination of the independent variables. For both functional forms, there are more datasets with 
smaller MAPE obtained using the nonparametric PCR than using the parametric PCR and OLS especially 
when the dependent variable is a nonlinear combination of the Xs.  

 
The magnitude of the difference of the MAPE for the three types of regression analysis is presented in 

Figure 1. Regardless of the functional form of the data-generating model, in cases where the OLS and 
parametric PCR are superior over the nonparametric PCR, the MAPE generated using the parametric PCR 
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and OLS is at most twice smaller compared to using the nonparametric PCR. On the other hand, for cases 
where the nonparametric PCR is better than parametric PCR, the generated MAPE using the former can be 
up to twelve times smaller for cases where the functional form of the data-generating model is linear and 
eight times smaller for model where the functional form is nonlinear than the result of the latter.   
 
 

Figure 1. Magnitude of MAPE by Data-Generating Function 
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Effect of the Data Dimensionality 

 
For both high and low dimensional datasets, there is a tremendous achievement in model fit for 

nonparametric PCR compared to the parametric counterpart.  The MAPE generated using the 
nonparametric PCR technique is smaller compared to the parametric PCR (see Table 2). 

 
Table 2.  Comparison of MAPE from PCR and NPCR by Data Dimensionality 

Data Generating Function Average MAPE Proportion of with Smallest MAPE 
OLS PCR NPCR OLS PCR NPCR 

High Dimensional (n<p) . 5.02% 1.63% 0.00% 0.00% 100.00% 
Low Dimensional (n>p)  32.25% 33.63% 29.22% 25.10% 0.20% 74.70% 

 
For high dimensional data, the smallest MAPE are observed under nonparametric PCR. In fact, the 

values of the MAPE for a high dimensional data using nonparametric PCR are all below 10% indicating 
adequacy of the predictive ability of the model.  Conversely, the highest MAPE are observed under 
parametric PCR.  Even low dimensional data, the smallest MAPE are also observed under nonparametric 
PCR. In contrast, the highest MAPE are observed under parametric PCR.  In low dimensional data, 25% of 
the datasets have smaller MAPE using the OLS technique and 75% of datasets with smaller MAPE is 
exhibited by nonparametric PCR. Even with lost variance due to excluded principal components, 
nonparametric PCR can still outperform OLS that includes all predictors in the model.  When the dimension 
of the data is high, all simulated datasets that have a smaller MAPE produced using nonparametric PCR can 
go up to ten times smaller compared to the parametric PCR. 
 

The predictive ability of both PCR and NPCR suffers tremendously when the dimension of the data is 
low as a result of the discarded principal components associated with very small eigenvalues. In fact, the 
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maximum value of MAPE even reached 80%. Principal components tend to leave out huge amount of 
information contained in the data. But, nonparametric PCR still exhibits advantage over parametric PCR. 
 

Overall, regardless of the dimension of the data, there are more datasets with smaller MAPE using the 
nonparametric PCR versus the parametric PCR. Nonparametric PCR is better than parametric PCR for low 
dimensional data. This advantage is even magnified for high dimensional data. 

 
Effect of Misspecification Error 

 

The effect of model misspecification is simulated by multiplying the error terms with a constant that 
will consequently affect model fit.  If the modeler failed to account all possible sources of explanation for 
the variation in y, e.g., when the model is misspecified, then OLS will manifest some degree of bias.  The 
effect of model fit is assessed only for low dimensional datasets and the dependent variable is a linear 
combination of the independent variables.   

 
In Table 3, for datasets without misspecification error, MAPE using the three techniques are almost 

similar. But still, lowest MAPE is observed when nonparametric PCR is used. On the other hand, for datasets 
with misspecification errors are at all times slightly larger when parametric PCR or OLS are used instead of 
nonparametric PCR.   
 

Table 3.  Comparison of MAPE from PCR and NPCR by Misspecification Error 

Data Generating Function Average MAPE Proportion of with Smallest 
MAPE 

OLS PCR NPCR OLS PCR NPCR 
No Misspecification Error 4.24% 4.92% 4.31% 54.00% 0.00% 46.00% 
With Misspecification Error  79.82% 82.44% 72.87% 12.70% 0.00% 87.30% 

 

Conclusions 

 
Principal components regression is used to address the problems brought about by multicollinearity 

usually associated with high dimensional data. The method usually selects the most important components 
and as a result, the variance contribution of other variables is left out resulting to bias in the estimated model. 
This problem is mitigated through the specification of the model in a nonparametric context. 

 
Nonparametric principal components regression is generally better than the parametric principal 

components regression when the true functional form of the model that generates the data is not linear. As the 
independent variables outnumbered the sample size, the predictive ability of the proposed procedure 
becomes more superior compared to the usual parametric principal components regression.   

 
For low dimensional datasets and without misspecification error, the predictive ability of the 

nonparametric principal components regression and the parametric principal components regression is fairly 
similar. However, when the data-generating model has misspecification error, the nonparametric principal 
components regression technique significantly improves the predictive ability of the model compared to the 
parametric principal components regression. 

 
In general, the proposed nonparametric principal components regression procedure can generate a 

model that effectively resolves the problem of multicollinearity as well as high dimensionality. While the 
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proposed nonparametric PCR is generally advantageous over parametric PCR in a wide variety of cases, the 
advantage is maximized when data is high dimensional and the functional form of the data-generating model 
is nonlinear.  
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RÉSUMÉ (ABSTRACT)  

Modeling of high dimensional data is often impaired with specification bias and multicollinearity. Principal components 

regression can resolve multicollinearity but specification bias remains due to the selection only of the important 

principal components to be included in the model, further resulting to the deterioration of predictive ability of the model. 

We propose the principal components regression in a nonparametric framework to address the multicollinearity problem 

(and high dimensionality of predictors) while minimizing (or possibly eliminating) the specification bias that affect 

predictive ability of the model. The simulation study illustrated how the proposed nonparametric principal components 

regression address the multicollinearity problem and resolve the issue of high dimensionality while retaining higher 

predictive ability relative to parametric principal components regression model. 
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