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1. Introduction 

In this study, we extend time series model for count data by Terui et al. (2010) so that the discrete 

response variables have over-dispersions. We first incorporate the model of an individual consumer’s 

purchase and then aggregate those up to product sale, after which we find a microstructure to generate over-

dispersions for our application. We prove that over-dispersion is inherent whenever consumers in the market 

do not behave independently, as usually assumed in economics and marketing. Then, we propose, using 

Gamma compound Poisson variables for discrete responses having over-dispersion, to build a multivariate 

time series model with hierarchical structures. We develop the statistical modeling of compound distributions 

by using hierarchical models rather than the density directly. Our proposed model nests the Terui et al.’s 

(2010) original model, keeping original parameters in the modeling linked with appropriate covariates at the 

upper level in the hierarchical models; the lower level model describes the dynamics by setting the state 

space prior on mixing parameters to generate compound variables. Then we obtain the joint posterior density 

by the full Bayes MCMC procedure. 

 

2. Microstructure for Generating Over-dispersions 

Suppose that there are H  numbers of potential consumers in the market and the number of purchases of 

product i by consumer h at time t follows a Poisson distribution with parameter ih  as 

 Poissoniht ihx  .                              (1) 

Thus, the total number of sales for product i, ity , also has the Poisson distribution 

  *
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    ,                         (2) 

where  tI h C  is an indicator function, taking one when consumer h belongs to potential shopper set 
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tC , i.e. when she is ready to buy, and zero otherwise,  
1

H

t t
h

H I h C


   with *h  as the index for 

reordering of shoppers in the set tC . In this circumstance, the over-dispersion phenomenon is derived by 

evaluating the mean and variance of ity  as 
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              (4) 

because it holds that  * * '
Cov , 0

ih t ih t
x x   for any pairs of correlated Poisson variables. 

That is, equation (4) implies that over-dispersion happens whenever at least one pair of consumers does 

not behave independently. This is not a strong assumption, as justified by discussions on the existence of 

reference group in society and their decision making, going back to Hyman (1942), and its application to 

social psychology based consumer behavior theory, such as Park and Lessig (1977), and Bearden and Etzel 

(1982).  On the other hand, the Gamma compound Poisson variable with positive parameters  ,a  , 

denoted as  ~ Compound Poisson ,y a  , satisfies over-dispersion because it has the first two moments 

 
      Var 1  .

E y a

y a E y



 



  
                        (5) 

 

3. Models for Defining Market Structure 

We assume that there are I  products in the market and denote ity  by the number of sales for the 

product i  at time  ( 1,..., )t t T , which follows the Gamma compound Poisson distribution independently 

with a time varying parameter  ,it ta   for 1,...,i I  when there is no competitive relationship to each 

other. Then we obtain the Gamma compound Poisson distribution with  ,ia  for market sales, defined 

as the aggregate of product sales, 
1

I

t it
i

n y


  under the assumption of no specific structure among products 

in the market.  That is, we have marginal distributions for product and market sales by 

 ~ Compound Poisson ,it it ty a  ,  *Compound Poisson ,t t tn a  ,    (6) 

where * I

t itit
a a . Furthermore, after tn  is given, the conditional distribution of product sales 
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 , 1,...,t ity y i I  follows 

 | ~ Dirichlet Compound Multinomial ,|t t t tt n n ay y   ,             (7) 

where  1 ,..., 't t Ita a a . The sequential use of (11) and (12) produces the joint distribution for market 

sale and product sales, 

     *, | , | , | ,t t t t t t t t t tp n y a p n a p y n a     .                    (8) 

We note that the conditioning set  *, ,t t ta a   has equivalent information with  ,t ta   if we take ta  as a 

full dimensional vector with non degenerated distribution. 

In contrast, Terui et al. (2010) proposed the dynamic generalized linear model based on Poisson variables 

without over-dispersions, which represents a macro model for aggregate sales directly without considering 

the microstructure. They used the reproductive property of Poisson variables and conditional multinomial 

distribution when the sum of variables is given, and they proposed a multivariate time series model with 

hierarchical structure on the discrete outcomes. That is, we have marginal distributions,  Poissonit ity  , 

 *Poissont tn   and conditional distribution  | Multinomial | ,t t tt itn ny y   , where * I

t itit
   

and  , 2,...,
I

t it it itit
i I      . The likelihood at time t is defined by  

     * *, | , | | ,t t t t t t t t tp n y p n p y n       ,                   (9) 

where the induced parameters *
t  and t , respectively, mean expected total sales and market shares for 

each product. These parameters, after making appropriate transformations     1 * 2, ' 't t t t t        so as to 

be Gaussian, are embedded in the state space model 
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,                      (10) 

where we set 

 1 *logt t  ,                                (11) 

for the parameters on  tn , and 2 ( )it it  , ith element of 2
t , is connected to the multinomial parameters 

it  by the relationship 
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      2 2 2
1 1exp exp ... exp 1it it t I t         for 1,..., 1i I  .   (12) 

Thus the likelihood function constituted by (9) and the state space prior (10) for transformed 

parameters constitute the dynamic generalized linear models. We note that ith element in the first 

equation of (10) includes covariate itX and stochastic trend it terms as 't t t t tF X      

and  (1, '), , 't it t it itF X      , and the settings of the order of stochastic trend and the transition of 

time varying coefficient define tH  in the system equation of (10). 

Instead of using these densities, we take the data augmentation approach to keep the original parameters, 

i.e., implying expected sales and market shares for each product, in the modeling and use the generated 

sample of  *,t t   in the MCMC process to define the likelihood for mixing parameters  ,t ta  : 

     * *, | , =Gamma | , Dirichlet |t t t t t t t t tp a a a          .          (13) 

Then, we have two kinds of prior on  *,t t  , i.e., state space prior (10) for dynamics and (13) for over-

dispersions. Thus we combine the likelihood function derived from (9) with priors (10) and (13) to derive the 

posterior density: 
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* *
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                         , | , , .

t t t t t t t

t t t t t t t t t

t t t t t t
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     (14) 

We note that   tp   contains prior structure  1|t tp   
  in the state space models (15) and also we 

set the state space prior on  ,t ta  as 

 
 1

,           ~ 0,

,    ~ 0, ,

t t t t z

t zt t t t z
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                      (15) 

where       1 log ,..., log , logt t It tz a a   and tf
  is the mean function. 

However, full description of joint posterior density will be provided after specifying our state space 

models in higher order structure model, as we apply it in the empirical application.  Higher Order Structure 

is defined in a similar way. 

 

5. Estimation and Forecasting 

In addition to the standard Bayesian inference on state space modeling by dynamic linear models (DLM) by 
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West and Harrison (1997), we use the MCMC approach to estimate the model, using Metropolis–Hastings 

sampling specifically for the conditional posterior density of link functions for the higher level model and 

mixing parameters for the lower level model, respectively, by 

      | , , , | | , ,s s s s s s s s s s
t t t t t t t t tp X V y p d p X V                    (16) 

     | , , , | | , ,t t t z z t t t t z zp z f V W p z p z f V W      .                 (17) 

Now we have two types of dynamic generalized linear models in the upper level for the original model as 

well as in the lower level for mixing parameters for compound distributions. Through both models, once the 

values of ( )s k
t for (16) and tz  for (17) are given, the structural equations coupled with the system 

equations in their state space priors constitute conventional Gaussian state space models. The multi-move 

sampler by Crater and Kohn (1994) and Fruhwirth-Schnatter(1994) is used to sample the state vectors.  

Next, one –step-ahead predictive density 1 | data)( tp y   is evaluated by 

1 1 111 1

1

| ,data) | , , , ,data) ( | , , ,data)( (

                                    ( | , , ,data) ,

T T T TTT T

T T z z T T z z

z V W p V Wp y p

p z z V W d dz dVdWdV dW

  



   



    
  

    (18) 

where “data” means the observed data     ,t ty X , and  1 11 | , , , ,dataT TTp z V W  
   is the 

conditional predictive density of upper level’s link parameter when the predicted state, predicted mixing 

parameters and state space covariance are given. To evaluate this density, we first define the predictive 

likelihood of 1T  conditional on 1tz   by 

        1 1 1 1 1 11| Gamma | , Dirichlet |
I I

T iT iT T iT iTT i i
p z a a            .   (19) 

6. Empirical Application 

We use the store level scanner - POS: point of sales -

 time series in the curry roux category that were applied to our previous model in Terui et al. (2010) for the c

omparison with the model with over-

dispersion. The weekly series comprises three manufacturers that produce three products each, for a total of n

ine products during 110 weeks. The first 100 weeks are used for estimation and the last 10 weeks are reserve

d for validation of forecasting. The data contain the amount of product sales for  ity , and “prices”, display 

(in-

store promotion)”, and “features (advertising in newspaper)” for marketing mix variables  itX . The displa

y and feature are binary data taking one when it was on, and zero when it was off. The logs of price data are 

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS047) p.5057



6 

 

used. Table 1 displays the summary statistics of these variables. 

 

Figure Market Structure - Instant Curry Data 

     

Market

Submarket
(Category)

Product

1A 1C

n

1U 2U

1B 1A 3A
2B 3B

2C 3C
 

Table Model Specification 

LML DIC RMSE(sum1) RMSE(sum2)

Compound Poisson

    Null 150459 -300686 728.330 728.330

    Usage 150706 -301278 613.740 426.120

Piosson

    Null 150453 -300620 792.709 792.709
    Usage 150593 -300995 621.130 449.510
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