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I. INTRODUCTION 
 
Dynamism often exists on several time series wherein univariate analysis on such data is not sufficient. Box 
et al. (1994) discussed a function which relates the output and the input series: 
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The equation above is referred to as the transfer function model. In this equation, the output series yt is a 
linear function of the current and past values of the input series xt filtered through the transfer function 

∑∞ ∞ . The problem with the Box-Jenkins transfer function model is that it only accounts 
for linear relationships between the input and the output series. The input and output series must also be 
bivariate stationary. Furthermore, an inherent feature of the untransformed input and output series is they 
must have a certain degree of integration (Granger 1981 as cited in Granger and Engle, 2003). 
 
A series of models were introduced to address these problems. Tjøstheim et.al. (2007), Li and Racine (2006) 
and Gao et.al. (2009) investigated nonlinear autoregressive transfer function models while Hidalgo (1992), 
Truong and Stone (1994) explored with nonparametric time series analysis. 
 
This paper proposes a semiparametric form of the transfer function model that is flexible enough to capture 
both linear and nonlinear features of the input and output series. The proposed model can also accommodate 
nonstationarity, seasonality and structural change without going through the prewhitening methods required 
in the parametric transfer function modeling algorithm. 
 
The postulated model is as follows: 
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Where: 
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 {yt}  = output series 

 {xit}  = ith input series 

 {εt}  = the error series 

 p  = number of input variables 

 t  = number of time series points 

 gi(xit)  = the smooth of yt on xit 

 Lt  = localized temporal effect 

 s  = number of clusters 

 ηjt  = random variation within the jth cluster 

 

II. METHODOLOGY 

 

We decompose the output series into two components, the “baseline” output component γt and what is called 

the localized temporal component λt. The baseline output will be explained by the additive nonparametric 

function g(xit), which will account for the dependence between the input and the output series, possibly 

capturing both the linear and nonlinear components. 

 

Any perturbations in the output not found in the input (e.g. seasonality and structural changes) will be 

captured by the localized temporal component λt. In turn, this component will be modeled by the localized 

temporal effect Lt.  

 

The following iterative procedure is used in estimating the model: 

 

Step1: Smooth the output series based on the input series. Using cubic smoothing splines, estimate the 

smooth function g(xt) which will gives a nonparametric fit on the dependencies link between the input and 

the output series. The initial additive model is as follows: 
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The innovation process εt is still not yet white noise since it still contains the localized temporal component. 

 

Step 2: Compute the residuals: 

 
 ttt xgye ˆ

 

This is a realization of the innovation process εt. The residuals εt contain information on the temporal 

dependencies left out in the output series that is not explained by the input series. 

 

Step3: Estimate the localized temporal component with a mixed model.  

Step4: Provide forecasts and compare forecast accuracy with the parametric methodology. 

 

A simulation study is conducted to compare the postulated model with its parametric counterpart. In the 
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simulation, a total number of 224 output time series are considered, each with 100 replicates. For the 

assessment of estimates, the Mean Absolute Percentage Error (MAPE) per scenario are computed for both 

the parametric and semiparametric procedures.  

 

III. RESULTS AND DISCUSSION 

 

Simulation results show that whereas the parametric procedure performs poorly for series with small time 

points (36), the semiparametric procedure is robust to changes in time points. As the number of points 

increases, The parametric procedure gives better estimates but the postulated procedure gives comparable 

estimates as well. 

 

Except for the presence of ladder trend, the postulated model has consistently produced lower MAPE than 

the parametric procedure. Again, as the number of time points increases, the performance of the parametric 

procedure becomes better. For output series with structural change, the postulated model yielded lower 

MAPE across all time points.  

 

Furthermore, even though the MAPE are smaller for the parametric transfer function procedure for long time 

series, the difference between their MAPE are not considerably large. That is, the postulated model still 

produces comparable estimates and is robust across the number of time points. 

 

For small number of time points, the postulated model yielded lower MAPEs for 31 out of 56 scenarios. The 

postulated model has consistently performed well on estimating the second form of the transfer function 

model. Majority of the time series with seasonality were modeled better by the semiparametric procedure. 

 

When there are 60 time points, the postulated model produced better estimates than the parametric procedure 

for majority of the scenarios with an exponentially decaying transfer function. Note also that 24 out of the 56 

scenarios with 60 time points are modeled better by the semiparametric procedure. 

 

Even though the semiparametric model produced better estimates only for 16 out of 56 scenarios for time 

series data with 180 data points, it has consistently produced better estimates for data with seasonality or 

structural change. 

 

For large numbers of time series points, the semiparametric procedure produced lower MAPE’s only in 13 

out of 56 scenarios, wherein 12 of which are for scenarios wherein seasonality, structural change or both are 

present. 

 

It is also worthy to note the limitations of the parametric transfer function model. First, in all cases of 

localized temporal effects, the crosscorrelation function can only identify correctly the delay lag of the input 

series less than 50% of the time.   

Except possibly for the presence of seasonality, when localized temporal effects are present in the output 
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series, the cross correlation function fails to specify a correct form of the transfer function. And even if a 

delay parameter is consistently specified, the specification is incorrect.  

 

The postulated model, being a nonparametric one can do away with the tedious specification of the model 

parameters, and therefore avoiding the problem of misspecification. 

 

Estimation convergence is also an issue for the parametric method. For data sets with a finite lag form of 

transfer function, 99.80% of the 11,200 estimation procedures converged. However the estimation procedure 

only converged for 75.75% of the 11,200 data sets with an exponentially decaying form of the transfer 

function. 

 

For the semiparametric transfer function procedure, even though in invokes two highly iterative procedures, 

the backfitting algorithm for the estimation of the additive model and the mixed modeling procedure, none of 

the 22400 time series in any scenario has experienced a nonconconvergent estimation procedure. 

 
IV. CONCLUSIONS AND RECOMMENDATIONS 

 

The following are the conclusions in the study: 

 

a. For time series with localized temporal effects, the parametric transfer function procedure may not 

 be reliable. 

b. The postulated model is robust with respect to the number of time series points. For short series, the 

 semiparametric model yielded lower MAPEs than the traditional procedure. For long time series, 

 the parametric procedure gave lower MAPEs but still the semiparametric procedure deems to be a 

 comparable alternative. 

c. The postulated model produced less MAPE than the parametric model when seasonality or 

 structural change is present in the output time series. 

d. In nonstationary input series scenarios, when a correlated input variable is added in, both 

 procedures are affected. 

  

There are still many things which can be added and improved in the study: 

 

a. Consider other forms of localized temporal effects such as a time-dependent volatility structure and 

 randomly occurring outliers. 

b. Add a nonparametric autoregressive term in the postulated model.  

c. Postulate methods which can detect localized temporal effects. 

d. Propose a generalized nonparametric transfer function model under the foundations of the combined 

 additive and mixed effects models. 
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