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Let Πi be a normal population with unknown mean µi and unknown common variance σ2,
i = 1, . . . , k(≥ 2). Let µ[1] ≤ · · · ≤ µ[k] denote the ordered µi-values. Bechhofer et al. (1954) considered
the problem of selecting the population with µ[k] under the indifference zone approach. Tong (1970)
considered the problem of constructing a fixed-width confidence interval of µ[k]. They proposed a
two-stage procedure to meet the probability requirement for each problem. See also Mukhopadhyay
and Solanky (1994) and the references therein. After selection, it would be desirable to get an estimate
of µ[k]. In this paper we give a procedure for selecting the population and simultaneously estimating
its mean with a fixed-width confidence interval under the indifference zone approach.

Let Xi1, · · · , Xin be n observations from Πi and let X̄i(n) =
∑n

j=1 Xij/n be the sample mean,
i = 1, . . . , k. We select the population that yields X̄[k] = max(X̄1(n), · · · , X̄k(n)) as the one associated
with µ[k], and estimate µ[k] by a confidence interval In = (X̄[k] − d, X̄[k] + d) with a length 2d(> 0).
Then for specified δ∗(> 0) and P ∗(1/k < P ∗ < 1), we want to determine the sample size n such that

P (CS, µ[k] ∈ In) ≥ P ∗ whenever µ[k] − µ[k−1] ≥ δ∗,(1)

where CS stands for the correct selection, which is said to be made if the selected population has the
mean µ[k].

In Section 1 we shall propose a two-stage procedure to meet the probability requirement (1).
An artificial example is given to see the implementation of the procedure in Section 2. In Section 3
the asymptotic efficiency of the sample size is examined. We also conduct simulations to see moderate
sample performances of the two-stage procedure.

1. Two-stage procedure

Without loss of generality, let µ[k] = µk. Then

P (CS, µ[k] ∈ In) = P
(
X̄k(n) > X̄i(n), i = 1, . . . , k − 1,

∣∣∣X̄k(n) − µk

∣∣∣ < d
)

= P
(
n1/2(X̄k(n) − µk)/σ + n1/2(µk − µi)/σ > n1/2(X̄i(n) − µi)/σ,

i = 1, . . . , k − 1, n1/2
∣∣∣X̄k(n) − µk

∣∣∣ /σ < n1/2d/σ
)

=
∫
|y|<n1/2d/σ

k−1∏
i=1

Φ
(
y + n1/2(µk − µi)/σ

)
dΦ(y),

where Φ(·) denotes the cumulative distribution function of the standard normal distribution. Since
µk − µi ≥ δ∗, it follows that

P (CS, µ[k] ∈ In) ≥
∫
|y|<n1/2d/σ

Φk−1
(
y + n1/2δ∗/σ

)
dΦ(y)(2)

=
∫
|y|<τη

Φk−1(y + τ)dΦ(y),

where η = d/δ∗ and τ = n1/2δ∗/σ. We determine τ∗ such that∫
|y|<τ∗η

Φk−1(y + τ∗)dΦ(y) = P ∗.(3)
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Then it follows from (2) that if the sample size n is chosen such that

n ≥ τ∗2σ2/δ∗2 = n∗ (say),

the probability requirement (1) is satisfied. The n∗ is called the optimal fixed sample size.
If σ were known, one would take [n∗] + 1 observations from each population and implement the

corresponding selection and estimation procedure, where [n∗] denotes the largest integer less than n∗.
Unfortunately, σ2 is unknown, and hence the optimal fixed sample size is not available. We propose
a two-stage procedure to meet the probability requirement (1).

Take an initial sample Xi1, · · · , Xim of size m(≥ 2) from Πi, i = 1, . . . , k and calculate

σ̂2
ν =

1
ν

k∑
i=1

m∑
j=1

(
Xij − X̄i(m)

)2

where ν = k(m − 1). Let τν(> 0) be such a constant that∫ ∞

0

{∫
|y|<τνηz

Φk−1 (y + τνz) dΦ(y)

}
gν(z)dz = P ∗,(4)

where gν(z) is the density function of
√

χ2
ν/ν with a chi-squared random variable χ2

ν with ν degrees
of freedom. We define the total sample size N by

N = max
{
m,

[
τ2
ν σ̂2

ν/δ∗2
]
+ 1

}
.(5)

If N > m, take N − m additional observations Xim+1, · · · , XiN from Πi, i = 1, . . . , k. Calculate
X̄i(N) = 1

N

∑N
j=1 Xij , i = 1, . . . , k. The selection and estimation procedure is implemented by using

X̄1(N), · · · , X̄k(N).

Theorem 1 The two-stage procedure satisfies

P (CS, µ[k] ∈ IN ) ≥ P ∗ whenever µ[k] − µ[k−1] ≥ δ∗.

2. Example

An artificial example is given to see how the two-stage procedure is implemented. We choose
k = 5, δ∗ = 4.0, d = 2.0, P ∗ = 0.9, and m = 10. Then we find τν = 3.494 in (4). Suppose that the
sample variances based on the first 10 observations are given by

22.3 (Π1), 30.4 (Π2), 25.2 (Π3), 21.4 (Π4), 27.8 (Π5).

We have that

σ̂2
ν =

1
5

(22.3 + 30.4 + 25.2 + 21.4 + 27.8) = 25.42.

Then from (5) the total sample size becomes

N = max

{
10,

[
3.4942 × 25.42

4.02

]
+ 1

}
= max {10, 20}
= 20.

Hence we need additional 10 observations from each population. Suppose that the following cumulative
sample means after the additional sampling are obtained

13.2 (Π1), 10.4 (Π2), 18.2 (Π3), 20.1 (Π4), 16.2 (Π5).
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Then at confidence level P ∗ = 0.9, we can assert that Π4 has the largest mean, which is contained in

I20 = (20.1 − 2, 20.1 + 2) = (18.1, 22.1).

3. Asymptotic efficiency

We shall investigate an asymptotic property of the sample size N in (5) as the first sample size
m is chosen such that m → ∞ as d → 0 and δ∗ → 0 with η = d/δ∗ fixed. The following lemma gives
the asymptotic expansion of τν in (4) as ν is large.

Lemma 1

τ2
ν = τ∗2 +

b

ν
+ o

(
1
ν

)
as ν → ∞,

where

b = −τ∗4G′′(τ∗2)
G′(τ∗2)

with

G(z) =
∫
|y|<η

√
z
Φk−1(y +

√
z)dΦ(y)

and τ∗ in (3).

It is difficult to analytically show that the value of b in Lemma 1 is positive, but the numerical
analysis supports that its value is positive. In the followings, we suppose that the value of b is positive.

Theorem 2 If the first sample size m is chosen such that

m → ∞ and mδ∗2 → 0

as d → 0 and δ∗ → 0 with η = d/δ∗ fixed, then

E(N)
n∗ → 1,

but

E(N − n∗) → ∞.

Theorem 2 tells us that the two-stage procedure is asymptotically first-order efficient, but is not
asymptotically second-order efficient in the sense of Ghosh and Mukhopadhyay (1981). However, it
is possible to make the two-stage procedure asymptotically second-order efficient if we can assume a
known lower bound σ2

L(> 0) for unknown variance σ2. See Mukhopadhyay and Duggan (1999).

Theorem 3 Suppose that σ2 > σ2
L. If the first sample size m is chosen such that

mδ∗2 → τ∗2σ2
L(6)

as d → 0 and δ∗ → 0 with η = d/δ∗ fixed, then

E(N − n∗) → bσ2

kτ∗2σ2
L

+
1
2
.(7)

We conducted simulations to see moderate sample size performances of the two-stage procedure.
We chose k = 5, P ∗ = 0.9, and σ2

L = 1.0 as the lower bound for unknown variance σ2. We also chose
η = 0.5, 1.0, 2.0, m = 10(10)40, and δ∗ = τ∗σL/

√
m in order that the first sample size m meets the
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Table 1: k = 5, P ∗ = 0.9, σ2
L = 1.0, σ2 = 1.52

η = 0.5 η = 1.0 η = 2.0
m CP E(N − n∗) CP E(N − n∗) CP E(N − n∗)

10 0.907 1.665 0,906 1.629 0.905 1.430
20 0.901 1.623 0.902 1.578 0.899 1.405
30 0.903 1.604 0.903 1.510 0.900 1.405
40 0.902 1.473 0.904 1.409 0.903 1.402

1.483 1.434 1.335

requirement (6). The simulation results are based on 10, 000 replications under µ1 = · · · = µ4 = µ5−δ∗

and σ2 = 1.52. We evaluated E(N − n∗) and CP = P (CS, µ5 ∈ IN ) in Table 1. The values in the
last row of the table provide the asymptotic ones obtained from the right-hand side of (7). One will
observe that the value of E(N − n∗) are well approximated by these asymptotic ones.
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