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1. Introduction 
Multivariate statistical process control is a mature tool used frequently in industry to monitor the 

quality of a process. Let p denote the number of variables to be controlled simultaneously. In order to control 

these p variables two main approaches can be employed: 1.- A univariate control chart for each variable 

(multiple scheme). 2.- A single multivariate control chart. 

The first option is discussed in Aparisi et al. (2010) for the optimum use of several X  control charts; 

Epprecht et al. (2011) discuss the use of optimized multiple EWMA control charts. The multivariate SPC has 

been widely discussed in the bibliography, being the T
2
 and MEWMA control charts the most employed 

alternatives (Montgomery, (2008)). 

In this paper, we consider the use of the T
2
 control chart when the number of variables to monitor is 

variable. This approach is useful when there is a set of p1 variables that are easy to monitor or whose 

measurement is cheap, against a set of p2 variables, p = p1 + p2, that are difficult and/or expensive to monitor. 

However, the information that these p2 variables provide is important to detect quickly the process quality 

shift. Therefore, there are cases when controlling the whole set of p variables may be difficult or expensive, 

but controlling sometimes p1 variables, and only when the process seems to have a problem controlling the 

full set of p variables, may be a cheaper option on average and very efficient, as we are going to show in this 

work. 

As an example, we may consider a process that produces an expensive electronic component and has 

three (correlated) quality variables to be monitored. Two of these are voltages, which are cheap and easy to 

measure. In addition, there is third variable, whose measurement is destructive. For example, the voltage that 

will burn a part of component. In other cases, the additional variables could need, for example, a laboratory 

analysis that may be difficult, slow, expensive, etc. However, as it shown later, these additional variables 

may help to detect the out-of-control state of the process very efficiently. 

 
2. New VDT2 and DDT2 control charts 

The standard T
2
 control chart procedure involves periodically taking a sample of size n, and next, calculating 

the sample average vector X
�

 for the p variables to be monitored. The T
2
 statistic is then computed as 

2 ' 1

0 0( ) ( )i i iT n X Xµ µ−= − ∑ −
� �

where 
'

0 0,1 0,2 0,( , , ... , )pµ µ µ µ=�  is the mean vector and ∑  is the 

covariance matrix, both when the process is in control. The charting statistic 
2

iT is called Hotelling´s T
2
 

statistic and is distributed as a chi-square variate with p degrees of freedom. When the process is in control 

( 0iµ µ=� �

), there is a probability α that this statistic exceeds a critical point 
2

,p αχ , so that the overall error 

rate can be maintained exactly at the level α by the use of a Shewhart type 
2χ  control chart for 

2

iT  with 
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an upper control limit (CL) of 
2

,p αχ . If 0iµ µ≠� �

, 
2

iT  is distributed as a non-central chi-squared 

distribution with p degrees of freedom and with non-centrality parameter 
' 1

0 0( ) ( )i inλ µ µ µ µ−= − ∑ −� � � �

, 

2ndλ = , where d is the Mahalanobis’ distance of 1µ�  with respect to 0µ� . 

 

 

 

 

 

 

 

 

 

 

     Figure 1. VDT
2
 Control Chart               Figure 2. DDT

2
 Control Chart 

 

However, as we have commented in the introduction, sometimes p2 out of the p variables are difficult 

and/or expensive to measure, while the remaining p1 variables are easy and cheap to measure. Hence, the 

total set of p variables can be separated in two groups, where p1 variables are always monitored and all the p 

= p1 + p2 variables are monitored only when there is a warning about the stability of the process.  

Two charts are proposed. The Variable-Dimension T
2
 control chart (VDT

2
) is shown on Figure 1. The 

procedure employed in this chart is similar to the one of the variable sampling T
2
 control chart (Aparisi, 

1996). The monitoring begins with a sample where only p1 variables are measured. If the T
2
 value computed 

for these p1 variables (T
2
p1) exceeds the control limit, CLp1, then it is assumed that the process is out of 

control. If T
2
p1 < w, where w is a warning limit, then for the next sample only the set of p1 variables will be 

measured. If w ≤ T
2
p1 ≤ CLp1 then in next sample all the variables p = p1 + p2 will be measured to compute 

T
2

p. When all the variables are measured the control limit is CLp2. If T
2

p < w then in next sample only the set 

of p1 variables is considered. 

This chart is a simplification of the chart when two warning limits are present, wp1, when p1 variables 

are considered, and wp, when all the variables are measured. Our results show that although a chart with two 

warning limits shows better performance, the improvement is not large. 

The second chart proposed is the Double-Dimension T
2
 control chart (DDT

2
), similar to the double 

sampling T
2
 control chart (Champ and Aparisi, 2008), where for the DDT

2
 chart the variable parameter is the 

number of variables to be measured (see Figure 2). In this case, if w ≤ T
2
p1 ≤ CLp1 the rest of variables (set 

p2) of the sample is measured and combined with the measurements of the set of p1 variables in order to 

obtain T
2

p, and this value is plotted in the same horizontal position on the chart, i.e, the decision of measuring 

all the variables is taken for the same sample, not waiting until the next sampling time. 

 

3. ARL computation 
The ARL of the VDT

2
 chart is calculated employing a Markov’s chain. In the case of only one warning 

limit, the following states are defined: 

State 1: 
2T w<  (and the next sample will contain only p1 variables) 

State 2: 
2w T CL≤ <  (and the next sample will contain all p variables) 

State 3: CLT >2
 (signal; absorbing state). 

w 
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     Consider the transition probability matrix for a given shift, d 

















=
100

3,22,21,2

3,12,11,1

ddd

ddd

d PPP

PPP

P  

For example Pd
1 2,  is the transition probability from state 1 to state 2, that is, when p1 variables are measured, 

2

1pT  falls in zone [w, CL] when there is a shift d. 

 

  
2 2

1,2 1 1 1 1( | , ) ( ( ) )d

i pP P w T CLp p d P w CLpχ λ= < < = < <    

 

where 
2dn=λ . 

    When the zero-state scenario si considered 1)()( 1
��

−−= dQIBdARL , where I is the 2×2 identity 

matrix, ( )T111 =
�

 and ( )21, bbB =
�

 is the 1×2 vector of initial state probabilities. Hence b b1 2 1+ = . 

Qd  is the 2 2×  probability transition matrix where the elements associated with the absorbing state have 

been deleted. I is the identity matrix of order 2. The ARL for the steady-state case is 
1

0( ) ( ) /dARL d B I Q ARL−= −
�

. 

    ARL calculations for the DDT
2
 control chart do not need a Markov chain approach. In this case, 

ARL = 1 / (1 – P(no signal)) where P(no signal) is the probability that the chart does not signal, given by: 

1
2

2 2 2

1 1 20 0
( ) ( ) ( ) ( )

p

p p p

CL v
w CLp

p

w
P no signal f v dv f v f u dudvχ χ χ

−

= +∫ ∫ ∫  

    In this paper, ARL results for the DDT2 chart are not shown due to length limitations. 

 

4. Optimization and Performance Comparison 
Software for finding the best parameters for VDT

2
 and DDT

2
 control charts employing Genetic 

Algorithms (GA) has been developed. Figure 3 shows the software for optimizing the VDT
2
 chart with one 

warning limit. 

The optimization is carried out for the following case: p1 = 2, p2 = 2, p = 2 + 2 = 4. Desired in-control 

ARL: 400. The user has to specify the shift for which the out-of-control ARL should be minimized. This 

specified out-of-control mean vector is at a Mahalanobis distance dp1 for the set of p1 variables and at another 

Mahalanobis’ distance dp for the set of p variables. It results obvious that VDT
2
 and DDT

2 
charts are only 

useful when dp > dp1, i. e., when adding more variables to the monitoring increases the performance of the 

scheme. In our example, the shift selected for having lowest out-of-control ARL has a shift size dp1 = 0.5 

Mahalanobis’ distance when p1 = 2 variables are measured and a shift size dp = 1 when p = 4 variables are 

monitored.  

Figure 3 shows the result of the optimization for VDT
2
 control chart. The resulting warning limit is 

w = 2.61, which has an in-control probability left tail equal to 0.729. The control limit for p1 variables is 

40.95, right tail probability = 0, which means that no control limit is needed for p1 variables. This is a 

common result for this scheme, and simplifies the use of the chart, as only the warning limit and one control 

limit (for the p variables) are required. The control limit for the p = p1 + p2 variables is 14.44, with a right 

tail probability of 0.00602. This chart has an in-control ARL of 399.94. The ARL for the given shift is 101.31. 
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Figure 3. Software for the optimization of the VDT
2
 control chart 

 

The next step is to compare the performance of this chart with that of a standard T
2
 control chart where 

always p1 variables are measured and versus a T
2
 control chart where always all the p variables are 

monitored at every sampling time. The T
2
 control with p1 variables has an out-of-control ARL of 216.90, 

more than twice the ARL of the VDT
2
 control chart. In addition, the VDT

2
 outperforms the control chart 

when all the variables are always measured, having this chart an out-of-control ARL = 107.86, although the 

improvement is marginal. However, the sampling cost of VDT
2
 versus a T

2
 employing all the variables may 

be quite smaller. How much smaller? The software returns the percentage of times than we must sample all 

the variables when the process is in control, 42%. Therefore, it is easy to compute the average cost of 

sampling of the VDT
2
. If the cost of measuring the p1 variables is c1 and the cost of measuring the p2 

variables is c2, then the average cost per sample is c1 + 0.42c2 (against a fixed cost of c1 + c2 of the T
2
 chart 

with which all p variables are always measured — a relative economy of 58c2 / (c1 + c2)% per sample). 

The optimum VDT
2
 has an average cost of sampling that is 0.42(sampling cost for p) + 0.58(sampling 

cost for p1) per sample. In some cases this cost could be still high. Another version of the software has been 

written where the percentage of times that all the variables are measured when the process is in control is a 

restriction for the optimization. This software is not shown here due to paper length limitations. If for 

example, this percentage is fixed at 20%, in order to reduce average sampling costs, the optimization returns: 

Warning limit: w = 3.82. Control limit for p1 variables = 24.35, right tail probability = 0.00000470 
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(practically the control limit can be set to infinite). Control limit for p = p1 + p2 variables = 12.80, right tail 

probability = 0.01229719. This chart has an in-control ARL = 400. The ARL of this scheme need to detect 

the shift is 105.74. That means that with only a marginal reduction in performance the sampling cost could 

be significantly reduced. 
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