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1- Introduction

The main goal of this paper is to study the asymptotic properties of least squares (LS) estimation

for invertible and causal PARMAmodels with uncorrelated but dependent errors (weak PARMA). Four

different LS estimators are considered: ordinary least squares (OLS), weighted least squares (WLS)

for an arbitrary vector of weights, generalized least squares (GLS) in which the weights correspond to

the theoretical seasonal variances and quasi-generalized least squares (QLS) where the weights are the

estimated seasonal variances. The strong consistency and the asymptotic normality are established

for each of them. Obviously, their asymptotic covariance matrices depend on the vector of weights.

Our work extends a result of Basawa and Lund (2001) for least squares estimation of PARMA models

with independent errors (strong PARMA).

The paper is organized as follows. The definitions of strong and weak PARMA processes are

given in Section 2 and situations in which weak PARMA representations naturally arise are presented.

In Section 3, we first recall the usual multivariate ARMA representation of a PARMA model. The

four LS estimators are described and their asymptotic properties are given in Theorems 1 and 2. The

proofs can be found in Francq, Roy and Saidi (2009) (FRS in the sequel). It is seen that the GLS

estimators are optimal in the class of WLS estimators when the noise sequence is in a particular class

of martingale differences. Arguing as in Francq, Roy and Zakoan (2005), a consistent estimator of the

asymptotic covariance matrix of LS estimators under the assumption of a weak noise is proposed. In

Section 4, we present an example of weak PARMA models for which the asymptotic covariance matrix

of the least squares estimators is given in a close form and is compared to the corresponding matrix

under the assumption of a strong noise. The difference can be huge. In FRS, Monte Carlo results

are presented. Two different PARMA models with strong and weak noises were used to investigate

the size and power of a Wald test based on the proposed consistent estimator of the asymptotic

covariance matrix, under the assumption of either a weak or strong noise. The rate of convergence

of the estimated asymptotic standard errors is also analysed. Finally, our results were exploited to

address the question of day-of-the-week seasonality of four European stock market indices. The space

constraint does not allow us to report these numerical results here.

2- Weak and Strong PARMA models

A stochastic process {Xt} is called periodically stationary if µt = E [Xt] and γt(h) = E [XtXt+h],
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h ∈ Z, are both periodic functions in time t with the same period T and E
[
X2

t

]
< +∞ for all t. For

convenience, the non-periodic notation Xt will be used interchangeably with the periodic notation

XnT+ν which refers to Xt during the season ν ∈ {1, ..., T} in the cycle n. By definition, a pe-

riodic process {Xt} follows a periodic (with period T ) autoregressive moving average model with

the following parameters at season ν ∈ {1, ..., T}: the mean µν , the autoregressive order and co-

efficients pν , ϕ1(ν), ..., ϕpν (ν), and the moving average order and coefficients qν ,θ1(ν), ..., θqν (ν), de-

noted simply PARMAT (p1, ..., pν , ..., pT ; q1, ..., qν , ..., qT ), if there exists a periodic white noise sequence

{ϵt} = {ϵnT+ν}, i.e. E [ϵt] = 0 for all t, E [ϵtϵt′ ] = 0 for all t ̸= t′, and E
[
ϵ2nT+ν

]
= σ2

ν > 0, such that

(1) (XnT+ν − µν)−
pν∑
k=1

ϕk(ν)(XnT+ν−k − µν−k) = ϵnT+ν −
qν∑
l=1

θl(ν)ϵnT+ν−l.

If the errors ϵt are uncorrelated but not necessarily independent, both periodic white noise or weak

periodic white noise are used to qualify the error process {ϵt} and similarly the terminology ”PARMA”

or ”weak PARMA” is used for the model (1). When the error terms σ−1
ν ϵnT+ν are independent and

identically distributed (iid) rather than only uncorrelated, the model (1) is called strong PARMA

model and {ϵt} is a strong periodic white noise. The process {ϵt = ϵnT+ν} can be interpreted as the

linear innovation of {Xt = XnT+ν}, i.e. ϵt = Xt − E [Xt|HX(t− 1)] where HX(t) is the Hilbert space

spanned by {Xs, s ≤ t}.
When the order of both the autoregressive and moving average components are not allowed to

vary with season, i.e., when p1 = ... = pT = p and q1 = .... = qT = q we simply write PARMAT (p; q)

instead of PARMAT (p, ..., p; q, ..., q). The terminologies periodic autoregressive (PAR) model and

periodic moving average (PMA) model are respectively used when the moving average orders are

null, and when the autoregressive orders are null. If T = 1 the process (1) is the usual stationary

autoregressive moving average model (ARMA).

Note that (1) is just a model, not a data generating process (DGP). Many DGP can be com-

patible with a weak PARMA representation. DGP admitting weak PARMA representations can be

obtained as i) certain transformations of strong PARMA processes, ii) causal representations of non

causal PARMA processes, iii) linear representations of non linear processes, or iv) approximations of

the so-called Wold decomposition. Examples are given in FRS. In particular, Roy and Saidi (2008)

showed that systematic sampling and temporal aggregation of a strong PARMA process leads in gen-

eral to a weak PARMA process. They provide a sufficient condition under which the noise of the

aggregated process is neither strong nor a martingale difference.

3- Least squares estimation of weak PARMA models

Here, we focus on the asymptotic properties of the least squares estimators of the autoregressive

and moving average parameters of the PARMAT process (1). There is no loss of generality in assuming

that p1 = ... = pT = p and q1 = ... = qT = q by adding coefficients equal to zero (Basawa and Lund,

2000). Furthermore, we suppose that the process is centered, that is µ1 = ... = µT = 0. We make

this assumption to lighten the presentation, but the results stated in this section extend directly for

models with constants.

The difference equations (1) can be written in the T -dimensional vector form (Vecchia, 1985)

(2) Φ0Xn −
p∗∑
k=1

ΦkXn−k = Θ0ϵϵϵn −
q∗∑
l=1

Θlϵϵϵn−l,

where

(3) Xn = (XnT+1, ..., XnT+T )
′ , ϵϵϵn = (ϵnT+1, ..., ϵnT+T )

′ ,
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p∗ = ⌊(p−1)/T ⌋+1, q∗ = ⌊(q−1)/T ⌋+1, the matrix coefficients Φk, k = 0, ..., p∗ and Θl, l = 0, ..., q∗,

are given in Vecchia (1985). Il particular, Φ0 and Θ0 are lower triangular matrices with 1’s along the

main diagonal.

From (2), we can in principle deduce the properties of weak PARMA parameter estimation from

existing results on parameter estimation of a vector ARMA model under general assumptions on the

white noise process including dependence cases. Here, we have preferred to work in the univariate

PARMA setting for various reasons. First, results obtained directly in terms of the univariate PARMA

representation are more directly usable because fewer parameters are involved and their estimation is

easier. For example, in a PARMAT (1, 1) model, there are 2T AR and MA parameters to estimate.

The corresponding VARMA(1,1) representation contains 4T 2 parameters among which 2T (2T −1) are

constrained to 1 or 0. The difference in the number of parameters to be estimated is huge, specially

with monthly or weekly data (T = 12, 52). Second, the VARMA representation (2) is not standard,

the matrices Φ0 and Θ0 are not in general the identity matrix.

The covariance matrix of the T -dimensional white noise ϵϵϵn is Σϵ = Diag(σ2
1, ..., σ

2
T ) > 0. Denote

by B the lag operator such that BhXn = Xn−h. Equation (2) can be written as

(4) Φ(B)Xn = Θ(B)ϵϵϵn

where Φ(z) = Φ0 −Φ1z − ...−Φp∗z
p∗ and Θ(z) = Θ0 −Θ1z − ...−Θq∗z

q∗ are the matrix polynomials

of the vectorial autoregressive moving average representation. It is important to note that the lag

operator B operates on the cycle index n. When it acts on the time index t = nT + ν of the periodic

process {Zt}, it gives BkZnT+ν = Z(n−k)T+ν .

Hereafter, we impose the following conditions on the process {Xn}.

(A1) The PARMA process {XnT+ν} is causal and invertible, in the sense that, the roots of det{Φ(z)}
and of det{Θ(z)} are greater than one in modulus. Furthermore, we assume that the VARMA

model (2) is identifiable.

For notation, let ϕ⃗(ν) = (ϕ1(ν), ..., ϕp(ν))
′ and θ⃗(ν) = (θ1(ν), ..., θq(ν))

′ respectively denote the

vectors of autoregressive and moving average parameters for season ν. The T (p + q)-dimensional

collection of all PARMA parameters is denoted by

α⃗ :=
(
ϕ⃗(1)′, ..., ϕ⃗(T )′, θ⃗(1)′, ..., θ⃗(T )′

)′
.

The white noise variances σ⃗2 =
(
σ2
1, ..., σ

2
T

)′
will be treated as nuisance parameters.

Let X1, ..., XNT be a data sample from the causal and invertible PARMA model (1) with the

true parameter value α⃗ = α⃗0 and σ⃗2 = σ⃗2
0. The sample contains N full periods of data which are

indexed from 0 to N − 1. Indeed, when 0 ≤ n ≤ N − 1 and 1 ≤ ν ≤ T , nT + ν goes from 1 to NT . It

is understood that α⃗0 belongs to the parameter space

Ω =

{
α⃗ =

(
ϕ⃗(1)′, ..., ϕ⃗(T )′, θ⃗(1)′, ..., θ⃗(T )′

)′
∈ RT (p+q) such that (A1) is verified

}
.

For α⃗ ∈ Ω, let ϵnT+ν(α⃗) be the periodically second-order stationary solution of

(5) ϵnT+ν(α⃗) = XnT+ν −
p∑

i=1

ϕi(ν)XnT+ν−i +

q∑
j=1

θj(ν)ϵnT+ν−j(α⃗).

Note that, almost surely, ϵnT+ν(α⃗0) = ϵnT+ν for all n ∈ Z and ν ∈ {1, ..., T}. Moreover, ϵnT+ν(α⃗) can

be approximated by enT+ν(α⃗) which is also determined recursively in t via a truncated version of (5)

(6) enT+ν(α⃗) = XnT+ν −
p∑

i=1

ϕi(ν)XnT+ν−i +

q∑
j=1

θj(ν)enT+ν−j(α⃗),
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where the unknown starting values are set to zero: e0(α⃗) = ... = e1−q(α⃗) = X0 = ... = X1−p = 0.

Let δ > 0 be a constant chosen such that α⃗0 belongs to the interior of the compact set

Ωδ =
{
α⃗ ∈ RT (p+q)|the zeros of det{Φ(z)} and those of det{Θ(z)} have modulus ≥ 1 + δ

}
.

The random variable ˆ⃗αOLS is called the ordinary least squares (OLS) estimator of α⃗ if it satisfies,

almost surely,

(7) SN ( ˆ⃗αOLS) = min
α⃗∈Ωδ

SN (α⃗) where SN (α⃗) =
1

N

N−1∑
n=0

T∑
ν=1

e2nT+ν(α⃗).

Because of the presence of heteroscedastic innovations, the OLS estimator might be inefficient. We

will see that, for some vectors of weights ω⃗2 =
(
ω2
1, ..., ω

2
T

)′
, the OLS estimator is asymptotically

outperformed by the weighted least squares (WLS) estimator ˆ⃗αWLS = ˆ⃗α
ω⃗2

WLS defined by

(8) Qω⃗2

N ( ˆ⃗αWLS) = min
α⃗∈Ωδ

Qω⃗2

N (α⃗) where Qω⃗2

N (α⃗) =
1

N

N−1∑
n=0

T∑
ν=1

ω−2
ν e2nT+ν(α⃗).

We will also see that an optimal WLS estimator is the generalized least squares (GLS) estimator

(9) ˆ⃗αGLS = ˆ⃗α
σ⃗2
0

WLS.

The GLS estimator assumes that σ⃗2
0 is known. In practice, this parameter has also to be estimated.

Given any consistent estimator ˆ⃗σ2 of σ⃗2
0, a quasi-generalized least squares (QLS) estimator of α⃗0 is

defined by

(10) ˆ⃗αQLS = ˆ⃗α
ˆ⃗σ2

WLS.

One possible consistent estimator of σ2
ν is σ̂2

ν = 1
N

∑N−1
n=0 e2nT+ν(

ˆ⃗αOLS). To establish the consistency of

the least squares estimators, an additional assumption is needed.

(A2) The T-dimensional white noise
{
ϵϵϵn = (ϵnT+1, ..., ϵnT+ν , ..., ϵnT+T )

′ , n ∈ Z
}
in (4) is strictly sta-

tionary and ergodic.

Theorem 1 Under Assumptions (A1) and (A2), and for any ω⃗2 = (ω2
1, . . . , ω

2
T ) > 0, where the

inequality applies element-wise, we have for the LS estimators respectively defined by (7), (8), (9) and

(10),

ˆ⃗αOLS → α⃗0, ˆ⃗α
ω⃗2

WLS → α⃗0, ˆ⃗αGLS → α⃗0, ˆ⃗αQLS → α⃗0, almost surely as N → ∞.

See FRS for the proof. Let ||Z||r = [E||Z||r]1/r where ||.|| stands for the Euclidean norm of a

vector. In addition to Assumptions (A1) and (A2), we need the following assumption to establish the

asymptotic normality.

(A3) The T-variate stationary process {Xn} is such that for some τ > 0, ||Xn||4+2τ < ∞ and
∞∑
h=0

[αX(h)]
τ

2+τ < ∞ where the αX(h)’s are the strong mixing coefficients of {Xn, n ∈ Z} .

Theorem 2 Under the assumptions of Theorem 1 and (A3), as N → ∞,

√
N( ˆ⃗αLS − α⃗0)

L→ N (0,VLS)
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where the subscript LS stands for OLS, WLS, GLS or QLS, and where

VOLS = V
(
α⃗0, (1, . . . , 1)

′) , VWLS = V(α⃗0, ω⃗
2), VGLS = VQLS = V(α⃗0, σ⃗

2
0),

with

(11) V(α⃗0, ω⃗
2) =

(
J(α⃗0, ω⃗

2)
)−1

I(α⃗0, ω⃗
2)
(
J(α⃗0, ω⃗

2)
)−1

,

I(α⃗0, ω⃗
2) =

T∑
ν=1

T∑
ν′=1

ω−2
ν ω−2

ν′

∞∑
k=−∞

E

[(
ϵν(α⃗0)

(
∂ϵν(α⃗)

∂α⃗

)
α⃗=α⃗0

)(
ϵkT+ν′(α⃗0)

(
∂ϵkT+ν′(α⃗)

∂α⃗

)
α⃗=α⃗0

)′]
and

J(α⃗0, ω⃗
2) =

T∑
ν=1

ω−2
ν E

[(
∂ϵν(α⃗)

∂α⃗

)
α⃗=α⃗0

(
∂ϵν(α⃗)

∂α⃗

)′

α⃗=α⃗0

]
.

The proof of this theorem and of the following remarks are given in FRS.

Remark 1 In the periodic AR case with µ⃗ = (µ1, . . . , µT )
′
= 0⃗, the OLS and WLS estimators

coincide.

Remark 2 In the strong PARMA setting, we obtain that

I(α⃗0, σ⃗
2
0) =

T∑
ν=1

σ−2
0ν E

[(
∂ϵν(α⃗)

∂α⃗

)
α⃗=α⃗0

(
∂ϵν(α⃗)

∂α⃗

)′

α⃗=α⃗0

]
= J(α⃗0, σ⃗

2
0).

This implies that the asymptotic covariance matrix of the QLS estimators for a PARMA model with

independent errors is

(12) VQLS =
(
J(α⃗0, σ⃗

2
0)
)−1

.

This result was obtained by Basawa and Lund (2001).

Remark 3 If {ϵt} is a martingale difference such that E
[
ϵ2t
∣∣Ft−1] = E

[
ϵ2t
]
where Ft is the σ-field

spanned by {ϵs, s ≤ t}, the QLS estimator is an optimal LS estimator in the sense that VWLS −
VQLS is a semi-definite positive matrix.

Remark 4 It can be shown that J(α⃗0, ω⃗
2) is consistently estimated by the empirical mean

Ĵ(α⃗0, ω⃗
2) =

T∑
ν=1

ω−2
ν

1

N

N−1∑
n=0

[(
∂enT+ν(α⃗)

∂α⃗

)
α⃗=ˆ⃗αLS

(
∂enT+ν(α⃗)

∂α⃗

)′

α⃗=ˆ⃗αLS

]
.

Note that the matrix (2π)−1I(α⃗0, ω⃗
2) is the spectral density at frequency zero of the process

Υn =
T∑

ν=1

ω−2
ν ϵnT+ν(α⃗0)

(
∂ϵnT+ν(α⃗)

∂α⃗

)
α⃗=α⃗0

.

A similar approach was followed in Francq, Roy and Zakoan (2005). For the numerical illustrations

presented in FRS, we used a VAR spectral estimator consisting in: i) fitting VAR(p) models for

p = 0, . . . , pmax to the series Υ̂n, n = 0, . . . , N − 1, where Υ̂n is obtained by replacing ϵnT+ν(α⃗0)) and

its derivatives by enT+ν( ˆ⃗αLS) and its derivatives in Υn; ii) selecting the order p which minimizes an

information criteria and approximating I(α⃗0, ω⃗
2) by (2π) times the spectral density at frequency zero

of the estimated VAR(p) model.
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4- Example of covariance matrix calculations

Consider the following m-dependent periodic white noise with T = 2:

ϵnT+ν = σν

m∏
j=0

ξnT+ν−j , ν = 1, 2,

and assume that the iid sequence {ξt} is such that E [ξt] = 0, E
[
ξ2t
]
= 1 and E

[
ξ4t
]
= κ < ∞.

From a realization Xt = ϵt, t = 1, ..., NT , of that weak white noise, suppose that a statistician

fits the following PAR2(1) model: {
XnT+1 − ϕ1XnT = ϵnT+1,

XnT+2 − ϕ2XnT+1 = ϵnT+2.

The true parameter values are ϕ1 = ϕ2 = 0 and σ⃗2 = σ⃗2
0. According to Theorem 2, some moment

calculations show that the asymptotic covariance matrix of the QLS estimator of
√
N
(
ϕ̂1, ϕ̂2

)′
is

given by

V
(w)
QLS =

(
J(α⃗0, σ⃗

2
0)
)−1

I(α⃗0, σ⃗
2
0)
(
J(α⃗0, σ⃗

2
0)
)−1

= κm

 σ2
01

σ2
02

0

0
σ2
02

σ2
01

 .

On the other hand from (12), the corresponding asymptotic covariance matrix under the assumption

of a strong noise is equal to

V
(s)
QLS =

(
J(α⃗0, σ⃗

2
0)
)−1

=

 σ2
01

σ2
02

0

0
σ2
02

σ2
01

 .

It is clear that V
(w)
QLS and V

(s)
QLS can be very different. For example, if the iid sequence {ξt} is N (0, 1),

E
[
ξ4t
]
= 3, and the discrepancy between the two matrices is important even for small m. It may lead

the statistician to wrongly reject the hypothesis that ϕ1 = ϕ2 = 0 if he does not take into account the

dependence of the errors ϵt.
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