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Abstract

Longitudinal studies are commonly occurred in the social and biomedical sciences. The overall test

for model adequacy is an essential issue in longitudinal categorical data analysis. Two goodness-of-fit

tests are proposed for the generalized estimating equations (GEE) models with longitudinal ordinal data

in terms of Pearson chi-squared and unweighted sum of square residual using the global odds ratio as

a measure of association. Our method can be regarded as an extension of the method proposed by Lin

(Computational Statistics and Data Analysis 2010; 54:1872-1880) considering four major variants

of working correlation structures. For large samples, the distributions of the two test statistics are

approximated by the standard normal distribution based on the asymptotic means and variances. In

simulation studies, the type I error rate and the power performance comparison between the proposed

tests and the current tests are presented for various sample sizes. The application of the proposed tests

is illustrated by a real data set.
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1 Introduction

Longitudinal data involving a series of ordinal responses from each subject are frequently oc-

curred in the social and biomedical sciences. Longitudinal ordinal data can be fitted by generalized

estimating equations (GEE) models proposed by Liang and Zeger [1], or generalized linear mixed

models (GLMMs) discussed by Breslow and Clayton [2]. Williamson et al. [3] developed marginal

means in cumulative logit models and cumulative probit models based on a global odds ratio as the

measure of association. Williamson et al. [4] also provided a SAS program, GEEGOR, for the analysis

of correlated categorical responses. Heagerty and Zeger [5] adopted a proportional odds model with

marginal cumulative probabilities using the GEE approach for clustered ordinal data. Yu and Yuan

[6] extended program GEEGOR to program GGOREX for the analysis of longitudinal ordinal data.

Prior to making inferences on model parameters, the assessment of model fit is a critical issue.

Many goodness-of-fit tests of regression models with longitudinal categorical responses have been

discussed. Pan [7] considered two goodness-of-fit tests based on residuals, Pearson chi-squared and

unweighted sum of residual squares, for GEE models with correlated binary data. Lin et al. [8]

proposed a goodness-of-fit test for GEE models with longitudinal binary data using nonparametric

smoothing. In this article, we propose the goodness-of-fit tests of regression models with longitudinal

ordinal data utilizing the global odds ratio as a measure of association, which can be regarded as

a generalization of Lin’s methods [9] based on residual analysis and four major variants of working

correlation structures.
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The familiar tactics for analyzing ordinal responses are proportional odds models, adjacent cat-

egory models and continuation ratio models referred by McCullagh [10], Clogg and Shihadeh [11],

and Agresti [12]. Among of them, the cumulative logit model with proportional odds assumption is

the most popular approach for analyzing ordinal data. The main aim of this article is to develop

two goodness-of-fit tests of the proportional odds model for longitudinal ordinal data. In Section 2,

the proportional odds models as well as the global odds ratio computational techniques are briefly

introduced, and two goodness-of-fit tests for proportional odds models based on residual analysis us-

ing the global odds ratio are proposed. In Section 3, simulation studies are conducted for exploring

the type I error rate and the power performance of the proposed tests. In addition, an example is

employed to illustrate the proposed methods. Finally, it concludes with discussion and future research.

2 Goodness-of-fit Test Statistics

Let Yit represent ordinal responses with (J + 1) categories, and xit represent p-dimensional co-

variate vectors for subject i at occasion t for i = 1, . . . , n and t = 1, . . . , ni. The covariate vector

xit can be discrete or continuous. For simplicity, we assume equal occasions, ni ≡ T . Denote yit as

a vector of J indicator variables, where yit = (y
(1)
it , . . . , y

(J)
it )′ with y

(j)
it = 1 if response Yit = j and

0 else. Let πit and η
(j)
it be the vector of marginal probabilities and the marginal cumulative proba-

bilities, respectively, where πit = (π
(1)
it , . . . , π

(J)
it )′ with π

(j)
it = P (Yit = j|xit) = P (y

(j)
it = 1|xit), and

η
(j)
it = P (Yit ≤ j |xit) =

∑j
k=1 π

(k)
it .

2.1 The Proportional Odds Model

The cumulative logit model with proportional odds assumption for describing the dependence

of Yit on xit is given by logit(η
(j)
it ) = log(η

(j)
it /(1 − η

(j)
it )) = λj + x′

it β = ξ
(j)
it for j = 1, . . . , J ,

where the intercepts λ1, . . . , λJ satisfy λ1 ≤ . . . ≤ λJ , β is the vector of regression coefficients with

β = (β1, . . . , βp)
′, and ξ

(j)
it is the jth element of a J-dimensional linear predictor ξit = (ξ

(1)
it , . . . , ξ

(J)
it )′.

Owing to π
(1)
it = η

(1)
it and π

(j)
it = exp(ξ

(j)
it )(1 + exp(ξ

(j)
it ))−1 − exp(ξ

(j−1)
it )(1 + exp(ξ

(j−1)
it ))−1 for j =

2, · · · , J , the linear predictor ξit can be rewritten as ξit = Z′
itθ with the parameter vector θ =

(λ1, . . . , λJ ,β
′)′ and the J × (J + p) design matrix,

Z′
it =


1 x′

it
. . .

...

1 x′
it

 .

A J-dimensional link function g connects πit and the linear predictor Z′
itθ as πit = g−1(Z′

itθ).

Denote the responses, the marginal probabilities as well as the design matrix for subject i as Yi =

(y′
i1, . . . ,y

′
iT )

′, πi = (π′
i1, . . . ,π

′
iT )

′, and Zi = (Zi1, . . . ,ZiT )
′
TJ×(J+p), respectively. The multivariate

generalized estimating equations proposed by Lipsitz et al. [13] and Liang and Zeger [1] for estimating

θ is the solution to

v1(θ,α) =
n∑

i=1

D′
iV

−1
i (Yi − πi(θ)) = 0,(1)

where Di = ∂πi/∂θ = (D′
i1, . . . ,D

′
iT )

′ with the jth row vector of Dit expressed by (∂π
(j)
it /∂λ1, . . . ,

∂π
(j)
it /∂βp) for j = 1, . . . , J ; t = 1, . . . , T , and Vi = Var(Yi).

2.2 The Global Odds Ratio

Williamson et al. [3] proposed a moment method for the analysis of longitudinal ordinal re-

sponses, analogous to the methods of Prentice [14] and Lipsitz et al. [15], using two sets of generalized
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estimating equations: the marginal distribution as equation (1) and the global odds ratio for joint

association between responses. The variance of Yi is expressed by Var(Yi) ≈ Vi(θ,α), where α is

a vector of association parameters for describing the global odds ratio. The “working” covariance

matrix of Yi,

Vi(θ,α) =


Vi11 Vi12 · · · Vi1T

Vi21 Vi22 · · · Vi2T
...

... · · ·
...

ViT1 ViT2 · · · ViTT


TJ×TJ

,

is a block matrix, where the diagonal block matrices, Vitt = Diag(πit)−πit π
′
it, describe the structural

covariance matrices at a given point of time for t = 1, . . . , T , and the off-diagonal block matrices Vist

have the elements of cov(y
(j)
is , y

(k)
it ) = E(y

(j)
is y

(k)
it )− E(y

(j)
is )E(y

(k)
it ) = ωijk(s, t)− π

(j)
is π

(k)
it to express the

longitudinal correlation matrices between any two time-points for s, t = 1, . . . , T ; j, k = 1, . . . , J .

A global odds ratio is an extension of the simple odds ratio for a 2 × 2 contingency table. It

is defined as the odds ratio of a 2 × 2 contingency table when the adjacent rows and columns of a

(J +1)× (J +1) contingency table are collapsed into a 2× 2 table. As such, a (J +1)× (J +1) table

has J2 global odds ratios. The global odds ratio for subject i with responses Yis = j and Yit = k is

defined as

Ψijk(s, t) =
Fijk(s, t)[1− η

(j)
is − η

(k)
it + Fijk(s, t)]

[η
(j)
is − Fijk(s, t)][η

(k)
it − Fijk(s, t)]

,(2)

where Fijk(s, t) = P (Yis ≤ j, Yit ≤ k) for i = 1, . . . , n, j, k = 1, . . . , J , and s, t = 1, . . . , T . Plackett

[16] showed that the joint distribution of Fijk(s, t) can be solved in terms of Ψijk(s, t) and the marginal

cumulative probabilities:

Fijk(s, t) =
[1 + (η

(j)
is + η

(k)
it )(Ψijk(s, t)− 1)−Bijk(s, t)]

2 (Ψijk(s, t)− 1)
if Ψijk(s, t) ̸= 1,

= η
(j)
is η

(k)
it if Ψijk(s, t) = 1,(3)

where Bijk(s, t) = {[1 + (η
(j)
is + η

(k)
it )(Ψijk(s, t)− 1)]2 + 4Ψijk(s, t)(1−Ψijk(s, t))η

(j)
is η

(k)
it }1/2 discussed

by Williamson et al. [3]. The joint cell probabilities ωijk(s, t) = P (Yis = j, Yit = k) = Fijk(s, t) −
Fij(k−1)(s, t) − Fi(j−1)k(s, t) + Fi(j−1)(k−1)(s, t) can be also determined by Ψijk(s, t), η

(j)
is and η

(k)
it . A

general model based on the global odds ratio is given by

logΨijk(s, t)(α) = ∆+∆j +∆k +∆jk + γ ′Xcorri(s, t),

where α = (∆,∆j ,∆k,∆jk,γ
′)′ is a vector of association parameters describing the global odds ratio,

∆, ∆j , ∆k, ∆jk are an intercept term, the jth row effect, the kth column effect as well as the interaction

effect with satisfying the constraints ∆J+1 = ∆j(J+1) = ∆(J+1)j = 0 for j = 1, . . . , J , respectively,

and the parameters γ ′ corresponds to the covariates Xcorri(s, t).

Define Ui as a (T (T − 1)((J +1)2 − 1)/2)× 1 random vector, Ui = (Ui11(1, 2), . . . , Ui(J+1)J(T −
1, T ))′, and its expectation as E(Ui) = ωi = ωi(θ,α) = (ωi11(1, 2), . . . , ωi(J+1)J(T − 1, T ))′, where

Uijk(s, t) = y
(j)
is y

(k)
it . A set of generalized estimating equations is used for the estimation of unknown

parameters α as follows:

v2(θ,α) =
n∑

i=1

C′
iW

−1
i (Ui − ωi(θ,α)) = 0,(4)

where Ci = ∂ωi/∂α and Wi = Var(Ui). By equations (1) and (4), the estimates of (θ̂, α̂) are

computed by an iterative algorithm:
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θ̂
(l+1)

= θ̂
(l) −

∑n
i=1 D̂

′
iV̂

−1
i (Ŷi − πi(θ̂

(l)
))∑n

i=1 D̂
′
iV̂

−1
i D̂i

and α̂(l+1) = α̂(l) −
∑n

i=1 Ĉ
′
i Ŵ

−1
i (Ûi − ωi(θ̂

(l+1)
, α̂(l)))∑n

i=1 Ĉ
′
iŴ

−1
i Ĉi

,

where l denotes the number of iterations.

2.3 Proposed Tests

Two proposed goodness-of-fit test statistics for assessing the proportional odds model with lon-

gitudinal ordinal data, Pearson chi-squared statistic and unweighted sum of residual squares statistic,

are generalizations of the test statistics developed by Pan [7] for the logistic regression model with

correlated binary data. The proposed test statistics are expressed by

Gp =
n∑

i=1

T∑
t=1

J∑
j=1

(y
(j)
it − π̂

(j)
it )2

π̂
(j)
it (1− π̂

(j)
it )

and Gu =
n∑

i=1

T∑
t=1

J∑
j=1

(y
(j)
it − π̂

(j)
it )2,(5)

whereGp is the Pearson chi-squared statistic andGu is the unweighted sum of square residuals statistic.

The approximate expectations and variances of Gp and Gu derived by Lin et al. [17] , respectively,

are given by ̂E(Gp) = nTJ , ̂Var(Gp) = (1−2π̂)′Â−1(I−Ĥ) ̂Var(Y)(I−Ĥ)′Â−1(1−2π̂), ̂E(Gu) = π̂′(1−
π̂), and ̂Var(Gu) = (1− 2π̂)′(I− Ĥ) ̂Var(Y)(I− Ĥ)′(1− 2π̂), where Ĥ = ÂZ(Z′ÂV̂−1ÂZ)−1Z′ÂV̂−1

with Z′ = (Z′
1, · · · ,Z′

n) being a (J + p) × (nTJ) matrix, Â = diag(π̂
(j)
it (1 − π̂

(j)
it )) and ̂Var(Y) =

diag(V1(θ̂, α̂), · · · ,Vn(θ̂, α̂)). Notice that the proposed statistics can be reduced to Pan’s statistics

[7] for binary responses when J = 1.

3 Simulation Study and Example

To evaluate the performance of the proposed tests for the proportional odds model fit in terms

of type I error rate and the power, a model considered by Lin [9] is denoted by,

logit(η
(j)
it ) = λ1j + 0.25D1i + 1.5X1it + β D1iX1it,

where the monotone difference intercepts are assigned by λ1 = (−0.5, 0, 0.5), D1i = 0 for i ≤ n/2

and 1 otherwise, X1it follows a uniform distribution on (−1, 1) for i = 1, . . . , n, t = 1, 2, 3, j = 1, 2, 3

and n = (100, 500, 1000). The pairwise correlations between the observations at the three occasions

within a subject are assumed to be 0.5. The covariance matrix of the uniform random variables

(X1i1, X1i2, X1i3) is set by

Σ =
1

3

 1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

 .

The correlated random numbers (u1, u2) based on Σ are generated by u1 ∼ Unif(−1, 1) and u2 =

CΛ1/2 u1, where C = (c1, c2, c3) and Λ = (a1, a2, a3) are the eigenvectors and the eigenvalues of

Σ, respectively. The coefficient β is ranged from 0 to 5 to compute the empirical type I error rate

(β = 0) and the powers (β = 1, 2, 3, 4, 5) of the proposed tests for detecting the interaction term.

Table 1 shows the power comparison of the proposed tests and Lin’s tests [9] utilizing four variants of

‘working’ correlation matrices: the independent, AR(1), exchangeable and unspecified structures for

1000 replications. It indicates that for all correlation structures the empirical type I error rates of the

proposed tests Gp and Gu compared with their asymptotic normal distributions are quite close to the

5 percent level of significance. The powers of the proposed tests Gp and Gu are dramatically larger

than those of the test proposed by Lin [9]. It reveals that the powers of the proposed tests based on

the global odds ratio as a measure of association dominate over those tests using particular ‘working’

correlation matrices.
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Table 1. The empirical type I error rates and powers of proposed tests Gp and Gu under four variant working correlation

structures and global odds ratio (GOR) for n = 100, 500, 1000 at 5% level of significant.

Test Independent AR(1) Exchangeable Unspecified GOR

Gp β 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000

0 0.052 0.055 0.058 0.042 0.059 0.051 0.052 0.050 0.052 0.062 0.058 0.054 0.049 0.051 0.052

1 0.396 0.512 0.598 0.315 0.345 0.381 0.352 0.396 0.452 0.213 0.265 0.304 0.798 0.821 0.860

2 0.545 0.612 0.687 0.490 0.516 0.539 0.518 0.531 0.564 0.367 0.419 0.435 0.864 0.887 0.905

3 0.699 0.764 0.803 0.607 0.626 0.644 0.620 0.667 0.701 0.557 0.573 0.598 0.894 0.910 0.934

4 0.761 0.821 0.894 0.717 0.840 0.919 0.733 0.758 0.798 0.648 0.739 0.765 0.928 0.942 0.970

5 0.836 0.897 0.945 0.799 0.906 0.939 0.788 0.824 0.865 0.734 0.786 0.806 0.945 0.973 0.990

Gu

0 0.050 0.061 0.053 0.047 0.053 0.058 0.041 0.049 0.051 0.044 0.049 0.045 0.048 0.047 0.050

1 0.767 0.795 0.825 0.698 0.712 0.721 0.715 0.724 0.754 0.670 0.681 0.698 0.932 0.948 0.971

2 0.869 0.887 0.906 0.823 0.871 0.901 0.838 0.842 0.857 0.797 0.825 0.849 0.959 0.980 0.994

3 0.949 0.967 0.988 0.943 0.955 0.968 0.939 0.945 0.960 0.936 0.942 0.957 0.988 0.998 1.000

4 0.987 0.994 1.000 0.981 0.996 0.999 0.986 0.996 0.999 0.978 0.992 0.999 1.000 1.000 1.000

5 0.996 1.000 1.000 1.000 1.000 1.000 0.995 0.999 0.999 0.994 0.999 1.000 1.000 1.000 1.000

Table 2. The parameter estimates under the marginal model and the global odds ratio model, their standard errors and

Wald statistics as well as p-values for marijuana study.

Marginal θ̂ S(θ̂) Wald p-value Associate α̂ S(α̂) Wald p-value

covariates statistic covariates statistic

λ1 3.112 0.302 106.373 0.000 ∆ -5.514 0.259 452.013 0.000

λ2 4.213 0.329 163.159 0.000 ∆1 2.951 0.178 307.002 0.000

gender -0.850 0.287 9.393 0.002 ∆2 1.199 0.128 87.947 0.000

time -0.493 0.059 69.676 0.000 time -0.041 0.007 30.318 0.000

An example employed to illustrate the application of the proposed tests was a study of marijuana

use for teenagers where 237 thirteen-year-old children who had used marijuana in the 1976∼1980 five

consecutive years. The longitudinal data set, originally from the U.S. National Youth Survey (Elliot

et al., [18]), includes a trichotomous response variable (1: never; 2: not more than once a month; 3:

more than once a month), and two covariates: annual time and gender of children. The aim of this

study was to investigate the effects of time and gender on marijuana use for teenagers from five annual

waves. Vermunt and Hagenaars [19] considered an additive model to fit this longitudinal ordinal data,

logit(η
(j)
it ) = λj+β1 t+β2Xi, where t is the annual wave for t = 1, . . . , 5 and Xi is the gender variable.

Xi = 0 for boys; i = 1, . . . , 117 and Xi = 1 for girls; i = 118, . . . , 237. The global odds ratio model is

expressed as

logΨijk(s, t) = ∆+∆j +∆k + γ ′|s− t|,

where we assumed Ψijk(s, t) depends on time and ∆jk = 0.

Table 2 summarizes the estimates of parameters, their standard errors and Wald statistics as well

as p-values under the marginal model and the global odds ratio model. The effects of time and gender

are both highly significant (p < 0.01). With the null additive model, the p-values of test statistics Gp

and Gu are 0.924 and 0.673, respectively, leading to the adequacy of the model.
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4 Conclusion and Discussion

The main purpose of this article is to propose two goodness-of-fit tests using the global odds ratio

as a measure of association for modeling longitudinal ordinal data. For large samples, the proposed

test statistics are approximated by normal distributions. The proposed tests have the largest powers

among all current tests using various working correlation structures and sample sizes. It is because that

the ‘working’ correlation parameters are subject to an uncertainty of definition referred by Crowder

[20], and global odds ratio can be regarded as a suitable general structure for the association of data.

Alternative competing classes for modeling repeated ordinal data based on random-effect growth

models can be referred to Williamson et al. [3], Heagerty and Zeger [5] and Vermunt and Hagenaars

[19], which will be the ongoing research.
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