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1 Introduction

The receiver operating characteristic (ROC) curve is a statistical tool for evaluating the accuracy

of diagnostic tests. The ROC curve demonstrates the balance between true positive rate (TPR or

sensitivity) and false positive rate (FPR or 1-specificity). Let T be a feature measurement, a simple rule

based on such a single feature can usually be expressed as T > c for a threshold c. A sample is classified

as positive if T > c. For a specific threshold c, TPR(c) = Pr(T > c|P ) and FPR(c) = Pr(T > c|N),

where P and N denote positive and negative, respectively. ROC curve is a two-dimensional plot of

(FPR(c), TPR(c)) : −∞ < c < ∞. Classification rule that have (FPR(c), TPR(c)) close to (0, 1)

indicate satisfactory discrimination, while those with (FPR(c), TPR(c)) near the 45◦ line cannot

discriminate between the two groups.

However, comparing curves directly has never been easy. In biomedical studies, investigators

often compare the validity of two tests based on the estimated areas under the respective ROC curves

(AUC). AUC is a popular metric because it has a simple probabilistic interpretation (Bamber (1975)).

AUC also has an advantage over single measures of performance such as the odd ratio or relative risk

(Pepe et al. (2004)). AUC is threshold independent because it considers all possible thresholds. The

problem is not all possible threshold is of practical use. Many markers may have the same AUC but

perform very differently for a range of thresholds of interest. So AUC alone seems to be not sufficient

to measure the performance of markers/classifiers. Many authors used partial area under the ROC

curve (PAUC) instead, which limits FPR in a low range or TPR in a high range, (Dodd and Pepe

(2003); Komoriet al. (2010); Wang and Chang (2010)). On the other hand, all existing methods based

on PAUC needs to give prerequisite range of FPR (or TPR).

In this paper, alternatively, we propose an method to automatically select markers with larger

PAUC, where FPR is proved to be in a practicable low range. Consequently, prerequisite range of

FPR is not necessary. By comparing the cross point of two ROC curves, we found a fact that the

marker with larger ratio of standard deviation of measurement of case group to standard deviation

of measurement of control group (RSD) is associated with larger PAUC with a reasonably low FPR,

under normal distribution assumption. Then together with AUC, we give a scheme to select markers.

This paper is organized as follows. In section 2, we discuss the cross point of two ROC curves.

In section 3, we show the numerical study to demonstrate our method. Section 4 gives conclusion.

2 ROC Curves

2.1 Cross point of ROC curves

Let x̃ and x be two markers. Cases and controls follow N(µ̃1, σ̃
2
1) and N(µ̃0, σ̃

2
0), respectively, for

marker x̃, and N(µ1, σ
2
1) and N(µ0, σ

2
0) for marker x, respectively. By the probability interpretation
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of AUC (Bamber (1975)), the exact AUC of x and x̃ can be written as:

(2.1)
AUC(x) = Φ( µ1−µ0√

σ2
1+σ2

0

) = Φ(∆),

AUC(x) = Φ( µ̃1−µ̃0√
σ̃2
1+σ̃2

0

) = Φ(∆̃),

where ∆ = (µ1 − µ0)/
√
σ2

0 + σ2
1 and ∆̃ = (µ̃1 − µ̃0)/

√
σ̃2

0 + σ̃2
1, which can be treated as effect

size of marker x and x̃, respectively. For convenience, we give the following definition:

Definition 2.1. Let ROCα(x̃) > ROCα(x) denotes that the ROC curve of x̃ is always higher than

ROC curve of x, when false positive rate is not larger than α, i.e. 0 < FPR < α.

Definition 2.2. Let PAUCα denotes that the partial area under ROC curve with 0 < FPR < α.

Note that ROCα(x̃) > ROCα(x) implies PAUCc(x̃) > PAUCc(x), for and c, 0 < c < α.

For convenience, we write RSD(x) = σ1/σ0, and RSD(x̃) = σ̃1/σ̃0. The following Lemma shows

that the ratio of standard deviation of case group to standard deviation of control group, RSD, play

a markable role when ROC curves cross.

Lemma 2.3. Suppose there are two markers x and x̃. Cases and controls follow N(µ̃1, σ̃
2
1) and

N(µ̃0, σ̃
2
0), respectively, for marker x̃, and N(µ1, σ

2
1) and N(µ0, σ

2
0) for marker x, respectively., we

have

a. The ROC curve of marker x will be cross with the ROC curve of marker x̃ if and only if

σ1

σ0
6= σ̃1

σ̃0
, (i.e, RSD(x) 6= RSD(x̃)).

b. If σ1/σ0 6= σ̃1/σ̃0, then ROCΦ(A)(x̃) > ROCΦ(A)(x) holds if and only if

σ̃1

σ̃0
>
σ1

σ0
, (i.e, RSD(x̃) > RSD(x)

. where Φ(A) is the FPR of the cross point, and A = ( σ̃0σ̃1 −
σ0
σ1

)−1(µ1−µ0σ1
− µ̃1−µ̃0

σ̃1
).

Proof. Since ROC curve of x is the plot of (α, TPR(FPR−1(α))), α ∈ [0, 1], where TPR(c) =

Prop(x1 > c) = 1− Φ( c−µ1σ1
) = Φ(µ1−cσ1

) and FPR(c) = Prop(x0 > c) = 1− Φ( c−µ0σ0
) = Φ(µ0−cσ0

),

(2.2) TPR(FPR−1(α)) = TPR(a(α)) = Φ(
µ1 − µ0 + σ0Φ−1(α)

σ1
).

So, we can conclude that the point on ROC cuve x̃ with FPR = α is higher than the point on

ROC cuve x with FPR = α, (0 < α < 1), if and only if

µ̃1 − µ̃0 + σ̃0Φ−1(α)

σ̃1
>
µ1 − µ0 + σ0Φ−1(α)

σ1

⇐⇒ (
σ̃0

σ̃1
− σ0

σ1
)Φ−1(α) >

µ1 − µ0

σ1
− µ̃1 − µ̃0

σ̃1

⇐⇒


0 < α < Φ(A), if σ̃0/σ̃1 < σ0/σ1

1 > α > Φ(A), if σ̃0/σ̃1 > σ0/σ1

trivial case, if σ̃0/σ̃1 = σ0/σ1.

Here trivial case means ROC curve of one marker is always higher or always lower than that of another

marker(except when α = 0 or 1), then the conclusion follows immediately.

Based on Lemma 2.3, the two ROC curves cross if and only if the RSDs are not equal. The

ROC curve of the marker with large RSD will be higher on the left side of the cross point.
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2.1.1 The range of FPR at the cross point

Following the above notation, the cross point of two ROC curves of marker x and x̃ is (Φ(A),Φ((µ1−
µ0 + σ0A)/σ1)). Following simple calculation, we have

(2.3)

A =
∆
√

1+(
σ0
σ1

)2−∆̃
√

1+(
σ̃0
σ̃1

)2

σ̃0
σ̃1

−σ0
σ1

= ∆

√
1+(

σ0
σ1

)2−
√

1+(
σ̃0
σ̃1

)2

σ̃0
σ̃1

−σ0
σ1

+
τ
√

1+(
σ̃0
σ̃1

)2

σ̃0
σ̃1

−σ0
σ1

,

where τ = ∆− ∆̃, the difference of effect size of the two markers. The FPR at the cross point curve

is dependent on effect size of AUCs and RSDs. Denote κ = σ̃0/σ̃1 − σ0/σ1, without loss of generality,

suppose κ > 0, then by Talor expansion theorem, we can get

(2.4) −∆
1√

1 + ( σ̃1σ̃0 )2
+
τ

κ

√
1 + (

σ̃0

σ̃1
)2 ≤ A ≤ −∆

1√
1 + (σ1σ0 )2

+
τ

κ

√
1 + (

σ̃0

σ̃1
)2

if AUC(x) = AUC(x̃), i.e., τ = 0, then,

(2.5) −∆
1√

1 + ( σ̃1σ̃0 )2
≤ A ≤ −∆

1√
1 + (σ1σ0 )2

.

Formulae (2.4) and (2.5) are not easy to use. Fortunately, a simple lower bound of A can be

obtained, i.e., A > −∆ follows if τ ≥ 0 (i.e., AUC(x) ≥ AUC(x̃)). This lower bound is easy to use,

because Φ(A) > Φ(−∆) = 1−AUC(x). For instance, if AUC(x) ≤ 0.9, then Φ(A) > 0.1, i.e., marker

x with larger PAUC can be restricted at least within interval (0, 0.1). Since in practice, AUC of a

single maker can not be large (say less than 0.9), this lower bound is of practicable use.

We can conclude, not strictly, that if the difference of AUC is not large, A > −∆ holds, i.e., a

lower bound FPR at the intersection point can be estimated by 1− AUC. We summarize this result

in the following theorem:

Theorem 2.4. Following the same distribution and notation of Lemma 2.3, let κ = σ̃0/σ̃1−σ0/σ1 and

τ = ∆− ∆̃. Without loss of generality, suppose RSD(x) > RSD(x̃) i.e., ROCΦ(A)(x) > ROCΦ(A)(x̃)

or equivalently, PAUCα(x) > PAUCα(x̃), for any α, 0 < α ≤ Φ(A), then two following conclusions

follows:

a. if AUC(x) ≥ AUC(x̃), i.e., τ ≥ 0, then, Φ(A) ≥ 1−AUC(x).

b. if AUC(x) < AUC(x̃), i.e., τ < 0, and |τ |/∆ ≤ B, then, Φ(A) ≥ 1−AUC(x).

where B = κ(
√

1 + (σ̃0/σ̃1)2 − σ̃0/σ̃1)/(1 + (σ̃0/σ̃1)2), which only dependents on RSD (σ̃0/σ̃1 and

σ0/σ1).

By Theorem 2.4 a, if the classifier with larger RSD is also associated with larger AUC, t, then

the lower bound of FPR at the cross point of two ROC curves is given by 1 − t. Moreover, if the

classifier with larger RSD is associated with less AUC, t, then by Theorem 2.4 b, if the relative change

of effect size of AUC is bounded by B (which is only dependent on RSD), then the lower bound of

FPR at the cross point of two ROC curves can be estimated by 1− t.

2.1.2 The range of TPR at the cross point

The TPR at the cross point is Φ((µ1 − µ0 + σ0A)/σ1). If Φ(A) > 1−AUC(x) holds, it is larger than

Φ(∆(
√
σ2

0 + σ2
1 − σ0)/σ1) > 0.5 . Especially, if AUCs of two compared markers are the same or their

difference of AUC is bounded as Theorem 2.4 b, the TPR at the cross point of ROC curves is larger

than 0.5.
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2.2 A marker selection scheme by AUC and RSD

Since larger AUC is associated with larger PAUC (FPR in a low range), we propose an algorithm of

marker selection by using AUC and RSD. Suppose there are p markers, our scheme goes as follows:

1. Rank markers by AUC and separate them into g groups. In each group, the markers have similar

AUCs;

2. Rank markers by RSD in each group, larger RSD has higher rank.

3. Select the top pi markers in the i-th group, i = 1, ..., g.

3 Numerical Study

3.1 Simulation

Here we generate 12 markers, following normal and mixture normal distributions. Assume the control

group for all markers follow standard normal distribution, for case group, x1-x6 follow normal dis-

tribution, and x7-x12 follow mixture normal distribution. The markers are generated as follows: Let

AUC=0.7, 0.8, 0.9, for each AUC we generate 3 distributions N(µi, i
2), where µi is decided by AUC

and standard deviation i, i=1, 2, 3. The mixture normal distribution for each AUC is constructed

by the combination of these 3 distributions. We select 2 normal distributions and 2 mixture normal

distributions for each AUC, then x1-x12 are constructed.

To rank these markers, we compute the empirical AUC, PAUC0.1 and PAUC0.2 with repetition

100 times, where PAUCα was defined as partial AUC as 0 < FPR < α. The sample sizes are 200

for both case and control groups. By our proposed scheme, we separate the 12 markers into 3 group,

then rank each group by RSD of each marker. We list the distribution, mean and standard error of

AUC, PAUC and RSD of each marker in Table 1.

We can see that in each group, both PAUC0.1 and PAUC0.2 increase strictly with RSD. By

our theoretical results, for each group, the marker with larger RSD is associated with larger PAUCα,

where 0 < α < 1−AUC. In group 1 and 2, AUC = 0.7 and 0.8 respectively, then the upper bound of

α can be at least as large as 0.3 and 0.2 respectively; In group 3, AUC = 0.9, so the upper bound of

α can be at least as large as 0.1, which is of practicable use even 0.1 is a very conservative estimate,

for the result is also true when α = 0.2 by Table 1.

For the similar structure in the 3 groups, We plot the density function and average ROC curve

for each marker in group 2 in Figure 1. The marker with higher RSD will have higher ROC curve in

a reasonably low range of FPR. By numeric simulation, this result is also true for a kind of mixture

normal distribution.

4 Conclusion

We found that among the markers with similar AUC, the one with larger RSD has larger PAUC,

where FPR is in a low range. We have also estimated the corresponding range of FPR, which is

simple and useful in a practice. We have introduced use of PAUC without requiring the specified

threshold. Coupled with AUC, we also give a clue to do marker selection by RSD.
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RÉSUMÉ (ABSTRACT)

Area under ROC curve (AUC) and partial area under ROC curve (PAUC) are two popular

measures based on ROC curve. AUC is threshold independent while PAUC is threshold dependent in

the sense that predetermined specificity or false positive rate (FPR) needs to be specified. In this work,

we give a scheme to automatically select the marker with larger PAUC, while maintaining specificity

in a practicably low range and without specifying the specificity. The marker with larger ratio of the

standard deviation of measurement of case group to the standard deviation of measurement of control

group (RSD) will have larger PAUC with FPR in a low range. It is proven under normal distribution

assumption, while numerical study is performed under non-normal distribution. The range of the

corresponding FPR of PAUC was also estimated. This indicates that RSD can be a good additional

measure to AUC to marker selection. We give a scheme to select a marker with AUC.
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