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INTRODUCTION 

Drug is developed with the intention of treatment of the entire population of patients with certain 
disease. However, if a drug is efficacious only for a fraction of population, then the conventional clinical trial 
is unlikely to be able to detect its efficacy if the fraction of the effective subpopulation is not sufficiently 
large. On the other hand, approved drugs are sometimes removed from the marketplace after the post-
marketing discovery of unexpected toxicity that was not detected in extensive pre-clinical and clinical 
studies. A plausible explanation for the observation of such an unanticipated adverse event is the existence of 
relatively small, unidentified, hyper-sensitive subpopulations and adverse events only stand out when a drug 
is administered to a large segment of the general population. A main goal of pharmacogenomics for 
personalized medicine is to develop genomic signatures to predict patients' responses to drug or biologic 
therapy for treatment decision. 

Recent advances of molecular technologies can screen a large number of potential markers in a single 
experiment and may provide more sensitive identification methods and with increased predictive accuracy. 
This article presents a statistical model to distinguish two types of biomarkers for treatment decision: 
biomarkers of susceptibility and biomarkers of response, and proposes an approach for identifying a fraction 
of susceptible patients who should be spared from the unnecessary treatment. The approach involves two 
steps. The first step is to identify a set of biomarkers of susceptibility from a mixture of biomarkers of 
susceptibility and biomarkers of response. The second step is to develop a class-imbalanced classifier, based 
on the biomarkers identified, using an ensemble classification algorithm since the number of susceptible 
patients is generally much smaller than the number of non-susceptible patients. Simulation experiment was 
used to illustrate the approach and discuss important issues and applications in the development of biomarker 
classifiers to identify a small number of susceptible patients.   
 
METHODS 
Biomarkers of Susceptibility and Biomarkers of Exposure  

Let S be the set of genes (markers) that express differently between the susceptible and non-susceptible 
subjects before the drug exposure, and T be the set of genes that express differently between the exposed and 
non-exposed subjects.  Denote the common genes for the sets S and T as A = S∪T consisting of genes that 
express differently between exposed and non-exposed subjects and between susceptible and non-susceptible 
subjects. The set B = S \ A (genes in S not in A) consists of genes that express differently only between 
susceptible and non-susceptible subjects, C = T \ A (genes in T not in A) consists of genes that express 
differently only between exposed and non-exposed subjects, and D consists of the remaining genes.  
 
A Procedure for Identifying Biomarkers of Susceptibility 
1. Identifying the differentially expressed gene set S* (= A∪B∪c) by comparing positive and negative 
samples in the exposed group where the gene set c is a subset of C (c ⊂ C) which are differentially expressed 
between the positives and negatives due to different effects for susceptible and non-susceptible subjects.  
2. Identifying the differentially expressed set T (= A∪C) by comparing non-exposed and exposed groups. 
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3. Identifying the common genes between the sets T and S* (T∩S*) to obtain the gene set (A∪c). 
4. Take the difference of the two gene sets to obtain the gene set B = S* \ (A∪c).  
 
Sample Size Needed to Identify Biomarkers of Susceptibility 
The needed sample size for a microarray study can be simply calculated based on the univariate method, 
regardless of correlation structure among the gene expression levels [1,2].  The needed sample size depends 
on the proportion of susceptible subpopulation (p), the proportions of susceptible subjects among the positive 
subjects and negative subjects and the effect sizes δ's. The proportion of susceptible subpopulation is typical 
small.  For illustrative purpose, we consider p = 0.10 and 0.05. The model involves three effect sizes:  drug 
effect between exposure and non-exposure for the susceptible subpopulation δS and for non-susceptible 
subpopulation δNS, and differences in susceptibility between two subpopulations δ.  To simplify the sample 
size calculation, we assume that the effect size of each gene set is constant and an equal sample size 
allocation for the non-exposed group and exposed group.  Table 1 shows the effect size parameters used in 
the sample size calculation. Given the total number of genes in the array and the number of genes in the sets 
A, B, C, and D, the sample size needed to achieve desired sensitivity λB to detect genes in B depends on the 
parameters specified in the two comparisons.  The needed sample size to identify S* (A, B, and c) in the 
first comparison depends on the specified sensitivity λB, the effect size δ for B, and the false positive rate α, 
as well as the proportion of the susceptible subpopulation p. The needed sample size to identify T (A and C) 
in the second comparison depends on the sensitivity λC to detect genes in C, the effect sizes δS and δNS, the 
false positive rate α2 and p.  The sensitivity λC in the second comparison should be high in order to identify 
as much C as possible.  The λC is set at 95% in the analysis.  The needed sample size is the maximum of 
the two sample size estimates from the two comparisons which ensures that the sensitivity for identifying B 
and C are both achieved the desired levels λB and λC, respectively.   
 
Simulation Study 

We provide several hypothetical examples to show the sample size needed for identifying the 
biomarkers of susceptibility (gene set B).  The number of genes in the array is 2,000, and the sizes of gene 
sets A, B, C and D are 50, 50, 150 and 1,750, respectively.  Table 4 shows the needed sample sizes for δ = 2 
and various δS and δΝS values, for p = 0.05 and 0.1, and with the desired sensitivity for detection of the set B, 
λB = 0.8 and 0.9,  with the false positive rates for the two comparisons α1 = α2 = 0.5%.   In Table 2, 
Column 4 shows the estimated sample size n1 (= n0) per group; the corresponding theoretical sensitivity 
estimates for identifying the gene set B, λ1B, and for the gene set C, λ2C, in the first and second comparisons, 
respectively, are shown in the columns 5-6.  The gray color indicates that the maximum size is obtained 
from the first comparison. The needed sample size increases as p decreases and as λB increases.  The 
sensitivity estimates for identifying B and C in both comparisons are all greater than or equal to the desired 
sensitivity levels.   

 
The simulation analysis provides an empirical evaluation of the model and approach using the 

theoretical sample size estimates shown in Table 2.  The simulation study was based on a dataset from a 
preclinical liver toxicity biomarker study (LTBS) conducted at the National Center for Toxicological 
Research, FDA.  The experiment involved a pair of compounds, a liver non-toxic drug and a liver toxic 
drug.  Detailed descriptions of the experimental design and platforms of the LTBS are given in McBurney 
et al. [3]  In this simulation study, data from the control and high dose group of liver toxicity drug with 12 
animals per group were used to generate the simulation data. The preclinical data were standardized and 
2,000 randomly selected genes with a minimum intensity at least 64 across all samples were used in the 
analysis.   

One thousand simulation samples were generated according to the design and sample sizes per group 
shown in Table 2.  However, only the needed total sample sizes less than 1,000 were evaluated due to 
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feasibility.  To minimize the confounding effect brought about by the variation in the observed number of 
positives in the exposed group, we simply used the sample size pn1 as the number of positives (susceptible 
subjects) n11 in the exposed group and pn0 as the number of susceptible subjects in the non-exposed group.  
The samples were generated from a multivariate normal distribution with the covariance matrix based on the 
control and high dose groups of the LTBS dataset.  The means of the gene expressions for the susceptible 
and non-susceptible subpopulations in the non-exposed and exposed groups were set according to Table 1.  
For each simulation sample set, the t-statistics and the correspondent p-values for the first and the second 
comparison were computed, and the numbers of false positives and true positives at the significant level α1 
= α2 = 0.5% were recorded.  The empirical estimates of the false positive rate α, q (FDR), average 
sensitivity λA and λB for identifying the gene sets A and B by the proposed procedure were then calculated.  
A false positive is defined in terms of (mis)identification of the genes in C or in D. Thus, α is calculated as 
the proportion of misidentifications over the 1,000 repetitions, and q is calculated as the average of the FDRs 
(ratio of misidentification of genes in C or in D over the total number of identifications) over the 1,000 
repetitions. 

Table 3 shows the empirical estimates of sensitivity, false positive rate and FDR for identifying the 
gene set B by the proposed procedure with the effect size δ = 2.  Generally, the proposed procedure can 
identify the biomarkers B with a desired sensitivity while controlling the false positive rate at the specified 
level α = 0.5%.  The empirical sensitivity for identifying the gene set B are all at or above the desired level 
λΒ except for λΒ = 0.9 and p = 0.1.  The false positive rate estimates α are around 0.5% and the FDR are in 
the range of 9.5%-11.20%.   
 
DISCUSSION and CONCLUSION 

Development of a reliable set of pharmacogenomic markers to predict individual susceptibility to 
serious adverse drug reaction is one of two main goals in personalized medicine research [4,5].  
Identification and quantification of pharmacogenomic biomarkers to reliably link individual responses to 
treatment with drug poses several challenges including the identification of individual genetic and/or non-
genetic factors that link to the drug’s pharmacokinetic and/or pharmacodynamic profiles.  For personalized 
medicine to become a reality, models/methods must be developed that can distinguish patients according to 
relevant differences in disease types, risk factors, and responses to therapy.  Most current approaches were 
developed to identify biomarkers of drug-induced toxicity.  The markers identified are not reliable; they are 
a mixture of biomarkers of exposure and susceptibility (gene sets A and C).  

In this paper, microarray gene expression data are used to illustrate the proposed approach for 
identifying biomarkers of susceptibility. As discussed, differences in individual responses to a particular drug 
can be due to genetic and non-genetic factors.  Genetic variation among individuals occurs on many 
different scales, ranging from gross alterations in the human karyotype to single nucleotide changes [6]. 
Genetic association studies are commonly performed to determine whether a genetic variant is associated 
with a particular disease or trait.  In genetic case-control studies, the frequency of alleles or genotypes is 
compared between the cases and controls. A difference in the frequency of an allele or genotype of the 
polymorphism being tested between the two groups indicates that the genetic marker may increase the risk of 
the disease or likelihood of the trait. Two molecular biomarkers of genetic variation are single nucleotide 
polymorphisms (SNP) and copy number polymorphisms (CNP).  The biomarkers identified from the 
microarray experiments can be used as candidate genes for the follow-up SNP and CNP analysis.  
Alternatively, the proposed procedure can be modified to identify the SNP and CNP genotype data. 
This study shows that the biomarkers identified by common methods are a mixture of biomarkers of 
exposure and susceptibility (A and C) and the proposed approach is specifically developed to identify 
biomarkers of susceptibility (B) to be used to identify susceptible patients in advance; however, a large 
sample size may be required for adequate power and low false positive rate when the proportion of 
susceptible subpopulation is small.  
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Table 1. Effect sizes of the four gene sets A, B, C and D used in sample size calculation 

 

 Susceptible  Non- susceptible  

 A B C D  A B C D 

Exposure δ + δS δ δS 0  δNS 0 δNS 0 

Non-exposure δ δ 0 0  0 0 0 0 

 

Table 2. Needed sample size to achieve at least the sensitivity λB for identifying the gene set B based on an 
equal allocation for the two groups n1 = n0 and effect size δ = 2 
 

 (δS, δNS) λB p n1 λ1B λ2C 

(2,2) 0.8 0.1 42 89% 100% 

  0.05 75 84% 100% 

 0.9 0.1 50 90% 100% 

  0.05 92 93% 100% 

(2,1) 0.8 0.1 42 89% 98% 

  0.05 75 84% 100% 

 0.9 0.1 50 90% 99% 

  0.05 92 93% 100% 

(2,0) 0.8 0.1 1172 100% 95% 

  0.05 4344 100% 95% 

 0.9 0.1 1172 100% 95% 

  0.05 4344 100% 95% 

(1,1) 0.8 0.1 43 89% 96% 

  0.05 75 84% 100% 

 0.9 0.1 50 90% 98% 

  0.05 92 93% 100% 

(1,0) 0.8 0.1 4145 100% 95% 

  0.05 16235 100% 95% 

 0.9 0.1 4145 100% 95% 

  0.05 16235 100% 95% 
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Table 3. Empirical estimates of false positive rate and sensitivity for identifying the biomarkers of 
susceptibility based on the sample sizes in Table 2 

 

(δS, δNS) λΒ p n11 n10 Aλ̂  Bλ̂  α̂  q̂  

(2, 2) 0.8 0.1 5 37 0.00% 87.90% 0.39% 9.50% 

  0.05 4 71 0.00% 83.28% 0.49% 11.20% 

 0.9 0.1 5 45 0.00% 88.99% 0.49% 10.55% 

  0.05 5 87 0.00% 92.57% 0.49% 9.77% 

(2, 1) 0.8 0.1 5 37 9.04% 87.90% 0.42% 9.68% 

  0.05 4 71 0.08% 83.28% 0.49% 11.20% 

 0.9 0.1 5 45 3.41% 88.99% 0.51% 10.65% 

  0.05 5 87 0.00% 92.57% 0.49% 9.77% 

(1, 1) 0.8 0.1 5 38 10.99% 88.15% 0.43% 9.57% 

  0.05 4 71 0.13% 83.28% 0.49% 11.19% 

 0.9 0.1 5 45 4.99% 88.99% 0.49% 10.23% 

  0.05 5 87 0.01% 92.57% 0.49% 9.77% 
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