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1. Introduction

In the statistical modelling of multivariate data, sometimes, not all designed measurements

are fully collected. The occurrence of missing values in multivariate analysis is a common problem

that might lead to biased estimates of parameters or inefficient inferences. Learning multivariate

normal (MVN) models from incomplete data has been well-developed and systematically studied in

the literature; see, e.g., Anderson (1957), Hocking and Smith (1968), Rubin (1987), and Liu (1999). For

analyzing data with incomplete observations, modern imputation methods such as the Expectation

Maximization (EM; Dempster et al., 1977) and data augmentation (DA; Tanner and Wong, 1987)

algorithms can be easily implemented by using the statistical packages: proc MI in SAS (SAS, 2001)

and the Missing Data Analysis Library in S-PLUS (Schimert et al., 2000).

Typically, the normality assumption for incomplete multivariate data is usually hard to be

justified. In some situations, the input data may be asymmetrically distributed or contain influential

outliers. The multivariate t (MVT) distribution has become the most frequently used analytical tool

for robust inference (Lange et al., 1989; Kotz and Nadarajah, 2004). As pointed out by Liu (1995),

to fit data having longer than normal tails, multiple imputations under MVT models allow to yield

more valid statistical inferences than using the normal distribution. Lange et al. (1989) remarked the

MVT model is not a panacea for modelling data with highly asymmetric observations.

Over the past decades, there has been a growing interest in proposing a parametric family of

multivariate skew t (MST) distributions (Jones and Faddy, 2003; Azzalini and Capitaino, 2003; Az-

zalini and Genton, 2008), which is an extension of the MVT family with additional shape parameters

to regulate skewness. In this paper, we consider the missing imputation problems under a new class

of MST distributions, defined by Sahu et al. (2003), which can accommodate a wider range of distri-

butional features. Sahu et al. (2003) remarked that the correlation structure within this family is not

affected by the introduction of skewness parameters.

To simplify the notation throughout this paper, we let tp(Y | ξ,Ω, ν) ∝
(
1+ν−1(Y −ξ)⊤Ω−1(Y −

ξ)
)−(ν+p)/2

denote the probability density function (pdf) of a p-dimensional MVT distribution with

location vector ξ, scale covariance matrix Ω and degrees of freedom (df) ν, and let Tp(· | ∆; ν) de-

note the cumulative distribution function (cdf) of tp(0,∆, ν). As considered in Sahu et al. (2003),

a p-dimensional random vector Y = (Y1, . . . , Yp)
⊤ follows a MST distribution with location vector

ξ ∈ Rp, scale covariance matrix Σ, skewness matrix Λ = Diag{λ1, . . . , λp} and df ν, denoted as
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Y ∼ Stp(ξ,Σ,Λ, ν), if its pdf is given by

f(Y | ξ,Σ,Λ, ν) = 2ptp(Y |ξ,Ω, ν)Tp

(
q

√
ν + p

U + ν

∣∣∣∆; ν + p

)
,(1)

where ∆ = (Ip + ΛΣ−1Λ)−1 = Ip − ΛΩ−1Λ, q = ΛΩ−1(Y − ξ) , U = (Y − ξ)⊤Ω−1(Y − ξ) and

Ω = Σ+Λ2.

Specifically, the MST distribution (1) has the following convenient stochastic representation:

(2) Y = ξ + τ−1/2Λ|Z1|+ τ−1/2Σ1/2Z2, τ ∼ Γ(ν/2, ν/2), τ ⊥ (Z1,Z2),

where Z1 and Z2 are two independent Np(0, Ip) and ‘⊥’ indicates independence.

In this class of MST models, we are devoted to developing tactical learning tools to handle

missing data problems. Throughout, the mechanism of missingness is assumed to be missing at random

(MAR), introduced by Rubin (1976), meaning that the missingness of input data depends only on

the observed values. A computationally flexible Monte Carlo Expectation Conditional Maximization

(MCECM) algorithm that incorporates two auxiliary matrices is provided to carry out maximum

likelihood (ML) estimation under a general pattern of missingness.

Typically, the inference from Bayesian perspective may result in richer inferences than does the

likelihood-based approach in the case of small samples. With the application of the well-established

Markov chain Monte Carlo (MCMC) method, the Bayesian sampling-based approach has become

an attractive alternative to classical single-imputation techniques. To pose the MST model in a

Bayesian framework, a Gibbs sampling scheme coupled with the Metropolis and Hastings (M-H)

algorithm (Hastings, 1970) and the DA method are developed to take account uncertainties of all

parameter and allows for creating multiple imputations of missing data. The priors are chosen to be

weakly informative to avoid improper posterior distributions. In addition, the posterior and predictive

inferences can be accurately extracted from a large converged Monte Carlo dependent samples.

2. The MST model with missing information

Let Y = (Y 1, . . . ,Y n) be a random sample of size n taken from Stp(ξ,Σ,Λ, ν) with n > p.

According to (2), a three-level hierarchical representation of MST models can be expressed as

Y j | (γj , τj) ∼ Np(ξ +Λγj ,Σ/τj),

γj | τj ∼ TNp(0, Ip/τj ; Rp
+),

τj ∼ Γ(ν/2, ν/2),(3)

where TNp(µ,Σ ;Rp
+) denotes a p-variate truncated normal distribution for Np(µ,Σ) lying within the

hyperplane Rp
+, which stands for the Euclidean vector space of all p-tuples of positive real numbers.

Some properties and moments concerning multivariate truncated normal distribution can be found in

Lin (2009, Sec 2.1) and Lin et al. (2009, Theorem 1).

To set up estimating equations for multivariate data allowing for missing values, we partition

Y j into two components (Y o⊤
j ,Y m⊤

j )⊤, where Y o
j (poj × 1) and Y m

j ((p− poj )× 1) denote the observed

and missing components of Y j , respectively. To facilitate computation, we introduce two types of the

binary indicator matrices, denoted by Oj (poj × p) and M j ((p− poj )× p), satisfying Y o
j = OjY j and

Y m
j = M jY j , which can be extracted from a p-dimensional identity matrix Ip corresponding to row

positions of Y o
j and Y m

j in Y j , respectively. It can be easily verified that (a) Y j = O⊤
j Y

o
j +M⊤

j Y
m
j ;

(b)O⊤
j Oj+M⊤

j M j = Ip. Accordingly, some important consequences are summarized in the following

theorem.

Theorem 1 Given the specification of (3), we have
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(a) The conditional distribution of Y o
j given γj and τj is

Y o
j | (γj , τj) ∼ Npoj

(ζoj , τ
−1
j Σoo

j ),

where ζoj = Oj(ξ +Λγj) and Σoo
j = OjΣO⊤

j .

(b) The conditional distribution of Y m
j given Y o

j , γj, and τj is

Y m
j | (Y o

j ,γj , τj) ∼ Np−poj
(ζm· o

j , τ−1
j Σmm· o

j ),

where ζm· o
j = M j

(
ξ + Λγj + ΣSoo

j (Y j − ξ − Λγj)
)
, Σmm· o

j = M j(Ip − ΣSoo
j )ΣM⊤

j and

Soo
j = O⊤

j (OjΣO⊤
j )

−1Oj.

(c) The marginal distribution of Y o
j is Stpoj (ξ

o
j ,Σ

oo
j ,Λoo

j , ν) with density

f(Y o
j ) = 2p

o
j tpoj (Y

o
j |ξoj ,Ωoo

j , ν)Tpoj

(
qoj

√
ν + poj
ν + Uo

j

| ∆oo
j ; ν + poj

)
,

where ξoj = Ojξ, Λoo
j = OjΛO⊤

j , Ωoo
j = OjΩO⊤

j , qoj = Λoo
j Ωoo−1

j (Y o
j − ξoj ), Uo

j = (Y j −
ξ)⊤Coo

j (Y j − ξ), Coo
j = O⊤

j Ω
oo−1

j Oj and ∆oo
j = Ipoj

−Λoo
j Ωoo−1

j Λoo
j .

(d) The posterior distribution of γj given Y o
j follows a multivariate truncated t distribution. That is,

γj | Y o
j ∼ Ttp

(
q∗j ,

Uo
j + ν

poj + ν
∆∗

j , ν + poj ; Rp
+

)
,

where q∗j = ΛCoo
j (Y j − ξ) and ∆∗

j = Ip −ΛCoo
j Λ.

(e) The conditional distribution of τj given Y o
j and γj is

τj | (Y o
j ,γj) ∼ Γ

(p+ poj + ν

2
,
(γj − q∗j )

⊤∆∗−1

j (γj − q∗j ) + Uo
j + ν

2

)
.

3. A fully Bayesian approach

Due to the growing advances of modern computing technology, the Bayesian method is frequently

considered as an alternative approach to dealing with missing data problems. Tanner and Wong

(1987) proposed the DA algorithm, which has been shown to be an effective procedure for multiple

imputations of missing data.

In MST models, it is difficult to draw samples from a posterior distribution θ | Y o directly. With

strategies similar to the DA method, we employ a M-H within Gibbs sampler that combines the latent

variables γ, τ , and unobserved data Y m to form an augmented posterior likelihood. The procedure

generates posterior variates by recursively drawing from the posterior distributions p(γj |Y o,θ(k)),

p(τj |γ(k+1)
j ,Y o,θ(k)), p(Y m

j |Y o,γ
(k+1)
j , τ

(k+1)
j ,θ(k)), and p(θ|Y o,Y m(k+1),γ

(k+1)
j , τ

(k+1)
j ). Following

Gelfand and Smith (1990), the simulations γ
(k)
j , τ

(k)
j , Y

m(k)
j and θ(k) will converge to their associated

target distributions after a sufficiently long burn-in period.

To avoid yielding improper posterior distributions, we need to choose proper prior distributions

for θ = (ξ,Σ,Λ, ν). Let Wp(a,V) denote the p-dimensional Wishart distribution with degrees of

freedom a and p×p scale matrix V. When the prior information is not available, a convenient strategy
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of avoiding improper posterior distribution is to use diffuse proper priors. The prior distributions

adopted are as follows:

ξ ∼ Np(a,κ
−1), B ∼ Wp(2γ, (2H)−1),

Σ−1|B ∼ Wp(2α, (2B)−1), λ ∼ Np(0,Γ), log(1/ν) ∼ U(−10, 10),

where (a,κ, α, γ,H,Γ) are fixed as appropriate quantities to yield the proper posterior distributions.

Thus, the joint prior density function of θ and B is

π(θ,B) ∝ |B| α+(2γ−p−1)/2|Σ|−(2α−p−1)/2 exp
{
− 1

2
(ξ − a)⊤κ (ξ − a)

}
× exp

{
−tr

(
(Σ−1 +H)B

)
− 1

2
λ⊤Γ−1λ

}
Jν ,(4)

where Jν = ν−1 (0 < ν < ∞) is the Jacobian of transforming log(1/ν) to ν.

Multiplying (4) with the complete data likelihood function, the joint posterior density can be

obtained by

p (θ,B,Y m, τ ,γ|Y o) ∝ π(θ,B)

n∏
j=1

f(Y m
j |Y o

j , τj ,γj ,θ) f(τj |Y o
j ,γj ,θ)

×f(γj |Y o
j ,θ) f(Y

o
j |θ).(5)

To implement the Gibbs sampler, we are now in a position to present the full conditional posterior

densities.

Theorem 2 The full conditional posteriors of θ, B, γj, τj and Y m
j are as follows (the symbol “| · · ·”

denotes conditioning on all other variables):

p (γj |Y o
j ,θ) ∼ Ttp

(
q∗j ,

ν + Uo
j

ν + poj
∆∗

j , ν + poj ; Rp
+

)
,

p (τj |γj ,Y
o
j ,θ) ∼ Γ

(p+ poj + ν

2
,
(γj − q∗j )

⊤∆∗−1

j (γj − q∗j ) + Uo
j + ν

2

)
,

p (Y m
j |Y o

j ,γj , τj ,θ) ∼ Np−poj
(ζm· o

j , τ−1
j Σmm· o

j ),

p (ξ| · · · ) ∼ Np(µ
∗,κ∗),

p(B| · · · ) ∼ Wp(2γ
∗, (2H∗)−1),

p(Σ−1| · · · ) ∼ Wp(α
∗,B∗−1),

p(λ| · · · ) ∼ Np(δ
∗,Γ∗),

where

κ∗ =
( n∑

j=1

τjΣ
−1 + κ

)−1
, µ∗ = κ∗

(
Σ−1

( n∑
j=1

τj(Y j −Λγj)
)
+ κa

)
,(6)

γ∗ = α+ γ, H∗ = H+Σ−1,(7)

α∗ = 2α+ n, B∗ = 2B+

n∑
j=1

τj(Y j − ξ −Λγj)(Y j − ξ −Λγj)
⊤,(8)

Γ∗ =
(
Γ−1 +Σ−1 ⊙

n∑
j=1

τjγjγ
⊤
j

)−1
, δ∗ = Γ∗

(
Σ−1 ⊙

n∑
j=1

τjγj(Y j − ξ)⊤
)
1p .(9)

The full conditional distribution of ν is

(10) p(ν| · · · ) ∝
[(ν/2)ν/2
Γ(ν/2)

]n( n∏
j=1

τ
ν/2
j

)
exp

{
− ν

2

n∑
j=1

τj

}
Jν ,

which is not a standard form.
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Proof: See Supplementary Section 3.

In the simulation process, samples for γ, τ , Y m, B, and θ are alternately generated. In light of

Theorem 2 the Gibbs sampler can be implemented as follows:

1. Generate γj from Ttp

(
q∗j ,

ν + Uo
j

ν + poj
∆∗

j , ν + poj ; Rp
+

)
, where q∗j , U

o
j and ∆∗

j are given in Theorem 1.

2. Generate τj from

Γ
(p+ poj + ν

2
,
(γj − q∗j )

⊤∆∗−1

j (γj − q∗j ) + Uo
j + ν

2

)
.

3. Generate Y m
j from Np−poj

(ζm·o
j , τ−1

j Σmm· o
j ), where ζm·o

j and Σmm· o
j are as in Theorem 1.

4. Generate ξ from Np(µ
∗,κ∗), where µ∗ and κ∗ are given in (6).

5. Generate B from Wp(2γ
∗, (2H∗)−1), where γ∗ and H∗ are given in (7).

6. Generate Σ−1 from Wp(α
∗,B∗−1), where α∗ and B∗ are given in (8).

7. Generate λ from Np(δ
∗,Γ∗), where δ∗ and Γ∗ are given in (9).

8. Generate ν from (10) via the M-H algorithm.
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RÉSUMÉ

Missing data is inevitable in many situations that could hamper data analysis for scientific

investigations. We establish flexible analytical tools for multivariate skew t models when fat-tailed,

asymmetric and missing observations simultaneously occur in the input data. For the ease of compu-

tation and theoretical developments, two auxiliary indicator matrices are incorporated into the model

for the determination of observed and missing components of each observation that can effectively

reduce the computational complexity. Under the missing at random assumption, we present a Monte

Carlo version of the ECM algorithm, which is performed to estimate the parameters and retrieve each

missing observation with a single value. Additionally, a Metropolis-Hastings within Gibbs sampler

with data augmentation is developed to account for the uncertainty of parameters as well as missing

outcomes. The methodology is illustrated through two real data sets.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS066) p.5605


