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Statistical Process Control (SPC) is an efficient and powerful formal technique used for monitoring 

processes. It consists of a collection of tools for resolving problems useful in obtaining a stable process. The 

control chart, which originated in the industrial environment, is one such tool, and probably the most 

technically sophisticated [6].  

This paper provides an analysis of the application of statistical control charts for the monitoring of 

turbidity, an indicator of the quality of drinking water. Because it is the quality of the water consumed by the 

population, there is a need for a rapid response when there is some deviation, no matter how small. This 

work arose from studies of the need to continuously monitor water quality indicators.  Even if the indicators 

show values within the limits of the specification, to improve quality, there is a need to assess the variability. 

As the variability only can be expressed in terms of statistics, control charts have a special role for this 

purpose [12]. When a process has only random variation, it is said to be under statistical control. However, 

apart from random causes, processes can undergo the action of special and structural causes, resulting in the 

occurrence of an extra variation that must be detected. 

The application of classical control charts assumes that the quality characteristic data of the process are 

independent and identically distributed [14]. If these assumptions are violated, the performance of the control 

chart may be insufficient, losing efficiency in detecting special causes [1].  Autocorrelation is not 

uncommon in this type of measurement, which limits the direct application of conventional statistical control 

charts, requiring application of other techniques. One possible solution is to adjust time series models to the 

data, such as Autoregressive Moving Average (ARIMA), and then apply the control charts to the residuals of 
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the model, which is done in this paper. 

In this paper, we cover only one indicator - turbidity, the state of water that is caused by the presence of 

finely divided particulate or colloidal matter, and microscopic organisms. According to existing legislation 

[3], the maximum value for turbidity in any sample point should be five turbidity units (NTU). Natural 

turbidity does not cause direct health problems. However, it is aesthetically unpleasant in drinking water, and 

suspended solids can provide shelter for pathogenic microorganisms. However, turbidity of anthropogenic 

origin may be associated with toxic compounds and pathogenic organisms, causing more serious problems. 

 

Statistical Control Charts 

A control chart is a visual statistical tool that highlights the presence of special causes. It basically 

consists of plotting lines representing the Upper Control Limit (UCL) and Lower Control Limit (LCL), the 

mean or target of the process (Central Line - CL) and the observed points, which represent, in general, a 

statistic related to the variable of interest. If one or more points are beyond the control limits, it indicates that 

the process can be out of statistical control, i.e. there may be a problem in the process [10]. 

The performance of a control chart is typically evaluated through parameters related to the distribution 

of time required for the chart to emit a signal. The Average Run Length (ARL) is one of these parameters. In 

a control chart, ARL0 indicates the average number of samples collected until the emission of a signal during 

the period under control, while ARL1 represents the average number of samples collected until the emission 

of a signal that indicates an out-of-control situation [2]. 

The most popular control chart for variables is the Shewhart control chart, which achieved success due 

to its simplicity. The decision rule is based only on examination of the last point: if it is beyond the control 

limits, it must intervene in the process. This is also a disadvantage, because it ignores any information given 

by the preceding sequence of points. This makes the Shewhart chart relatively insensitive to small changes in 

the process, 1,5σ or less [6]. The Cumulative Sum (CUSUM) control chart and the Exponentially Weighted 

Moving Average (EWMA) chart were developed to correct this deficiency, and are indicated for the 

monitoring of processes subject to minor deviations. These two charts help in decision making, because they 

are based on the results presented by a number of samples rather than isolated observations, i.e., the analysis 

of this chart is a function of current and previous results. 

Typical control charts can only be effective if the observations at different times are independent and 

normally distributed. Violation of these assumptions implies a reduction in the performance of the chart, 

generating more false positives [4][6]. When the observations are autocorrelated, two approaches, in general, 

have been applied in several studies. One approach is to apply a control chart with extended limits. The other 

involves adjusting the data to a time series model and monitoring their residuals [13]. This model is used in 

this paper. It is also possible to solve the problem of autocorrelation with a less frequent sampling, but this 

can cause an increase in time to detect a real change in the process [6]. 

The application of control charts consists of two phases. Phase I is a retrospective study of samples 

from the process being monitored, where the necessary checks are carried out and parameters estimated.  In 

Phase II, information obtained in Phase I is used in the construction of control charts that are used to test 

whether the process remains under control when the future observations are monitored [12] [10]. In this 

study, we only executed Phase I, and the results can be used for future monitoring in order to keep this 

variable in a state of statistical control (Phase II).  

 

CUSUM and EWMA Control Charts 

The CUSUM chart was first proposed by [7], and the decision about the state of the process is based on 

the information accumulated in the previous samples. If the process is under statistical control, the 

cumulative sum describes a random curve around the mean. However, if the mean changes for some value 

above (or below) the nominal value, then an increasing (or decreasing) trend appears in the cumulative sum. 

The CUSUM works accumulating deviations through the statistics   
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(upper CUSUM) and   
                      

   (lower CUSUM), with   
    

     The 

reference value K is chosen between the nominal value    and the   , mean out of statistical control value, 

that we are interested in detecting. So, if the changes are expressed in terms of standard deviations 

        , then the value of K is the half of the magnitude of the change                    . 

If   
  or   

  exceeds the decision limit H, we say that the process is out of statistical control.  The 

parameters K and H are estimated in order to establish good ARL performance. A reasonable value for H is 

five times the standard deviation of the process. An ARL0 = 370 results in K = 0,5 and H = 4,77 [6]. 

The EWMA chart [9] is similar to the CUSUM.  The main difference is that the EWMA provides 

greater weight to more current information and less weight to older information. The exponentially weighted 

moving average chart is defined by                  where    is the most recently observed value, 

λ is the parameter that corresponds to the weight given the observations, usually 0,1 or 0,2, and the initial 

value is the nominal value. Assuming that the observations    are independent random variables with 

variance   , then the variance of    is    
                       . The central line is CL = 0 and 

for calculating the control limits, the equations                               and 

                              are applied, where L is the width of the control limits. A 

frequent value for L is 3(three) (conventional three-sigma limits). Being a chart that uses a weighted average 

of samples, this chart is more robust for the normality assumption [6].  

 

Methodology 

This analysis was done with data from the year 2009, from a water treatment plant in the city of 

Joinville, southern Brazil. Daily, every half hour a sample is taken in order to verify the level of residual 

chlorine, fluorine, and turbidity, among others. The values taken from the samples are verified according to 

the parameters of the law. Periodic reports are made available to the local people. For Phase I, 37 samples 

taken from the plant exit were analyzed, corresponding to a complete day in January 2009. The Jarque Bera 

test was applied to verify the assumption of normality, and autocorrelation and partial autocorrelation 

function charts were applied to check the autocorrelation.  We used the GNU R( version 2.10.1)[8] for all 

the analyses, with the contributed packages forecast[5] for the ARIMA model, and the package qcc[11] for 

the control charts. The nominal value, in this case, must meet the standards, as the maximum allowed is 

1(one) NTU. 

 

Results and Discussion  

Fig.1a shows the time-series plot for turbidity. The examination of the plot in Fig. 1a reveals that the 

behavior of turbidity is not random, indicating that the values of turbidity seem to depend on the previous 

values. As we can see in Fig. 1b, autocorrelation is present for the turbidity data. To check the normality, the 

Jarque Bera test was applied, and the data can be considered normally distributed (p =0,3053). Time 

dependence is not rare in such measurements, and it has a result, an apparent trend that depends on the time 

parameter. Therefore, typical SPC control charts are not appropriate, due to presence of autocorrelation [12]. 

An ARIMA (1,1,0) model was fitted and a diagnosis check was used to validate the model. The 

residuals of the model were independent and normally distributed (p-value = 0,8126). The mean absolute 

percentage error (MAPE) was 7,15%. 
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Figure 1: Time series plot (a) and autocorrelation function (b) for turbidity. 

 

We applied a Shewhart control chart on the residuals from the model (Fig 2b). One can see that there 

are no points beyond the control limits, which occurs when applying the conventional chart to the observed 

data (Fig 2a). The process is under statistical control and the presence of autocorrelation leads to an 

indication of more false positives. If autocorrelation were not observed, it could result in unnecessary stops 

in the process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Shewhart Control Charts, applied to turbidity data (a) and to the residuals from the 

ARIMA  model (b). 
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We applied a CUSUM chart to the residuals of the ARIMA model and this also indicates a control 

condition (Figure 3b). When the CUSUM chart was applied on the observed data, many false alarms were 

also indicated (Figure 3a).  Although not shown here, the same occurs with the EWMA chart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: CUSUM (a) applied to turbidity data (a) and to the residuals from the ARIMA model 

(b). 

 

To complement, we applied a Shewhart chart and a CUSUM chart to monitor some further measures 

(Figures 4a and 4b). It can be observed that the CUSUM chart signals an increase in turbidity level, starting 

from the first observation after the change, which does not occur in the Shewhart chart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Shewhart (a) and CUSUM (b) charts applied to monitoring new measures. 
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The supplementary rules (yellow points) indicate that something may be occurring in the process, but also 

increase the number of false alarms. For this reason are not considered in this paper.  

 

Conclusions and Final Considerations 

In this paper, control charts for turbidity were presented in order to propose alternatives for future 

monitoring of the process. This analysis emphasized the importance of verifying the assumptions of 

normality and autocorrelation before using control charts to monitor water quality parameters.  

In all analyses, the values beyond the control limits were false alarms, caused by the presence of 

autocorrelation. The methodology allowed us to define the dimensions of quality in the process of treated 

water turbidity going beyond just meeting the specification limits. The final results obtained with the 

application of control charts for this process were similar. In choosing a procedure for monitoring, the 

positives and negatives of each technique must be balanced. While the Shewhart chart is easy to implement, 

CUSUM and EWMA give more information about the trend of the process, but the latter is more robust on 

the issue of normality. A suggestion for future studies is to investigate the application of a combined 

Shewhart CUSUM chart, which allows signal changes of several magnitudes.  
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