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1 Introduction

A seemingly unrelated regression (SUR) system proposed by Zellner (1962) comprises several indi-

vidual relationships that are linked by the fact that their disturbances are correlated. Such models

have found many applications. For example, demand functions can be estimated for different house-

holds (or household types) for a given commodity. The correlation among the equation disturbances

could come from several sources such as correlated shocks to household income. Alternatively, one

could model the demand of a household for different commodities, but adding-up constraints leads

to restrictions on the parameters of different equations in this case. On the other hand, equations

explaining some phenomenon in different cities, states, countries, firms or industries provide a natural

application as these various entities are likely to be subject to spill overs from economy-wide or world-

wide shocks. In fact the SUR model is a generalization of multivariate regression using a vectorized

parameter model. There are two main motivations for use of SUR. The first one is to gain efficiency

in estimation by combining information on different equations. The second motivation is to impose

and/or test restrictions that involve parameters in different equations.

In most of the empirical works people are often concerned about problems with the specification

of the model or problems with the data. This problem arises in situations when the explanatory

variables are highly inter-correlated.

In this paper, we apply differencing method to remove the nonparametric parts in seemingly

unrelated semiparametric (SUS) model and then estimate the linear parts to accelerate estimating the

parametric parts (linear parts). At the second step, nonparametric technique is applied to estimate

the nonparametric parts. In this regard we deal with SUS model applying differencing methodology,

under multicollinearity setting. Thus we use ridge regression concept that was proposed in the 1970’s

to combat the multicollinearity in regression problems.

2 Specifying SUS Model

Consider a system of M equations that follow the semiparametric model given by

(2.1) Y i = Xiβi + f i(z) + ϵi, i = 1, ...,M
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where Y i is a vector of T × 1 observations on the dependent variable, Xi is a T × pi matrix of obser-

vations on pi explanatory variables, βi is a pi× 1 dimensional vector of unknown location parameters,

f i(z) is a T × 1 vector and ϵi is a T × 1 vector of random errors. M is the number of equations in the

system, T is the number of observations per equation and pi is the number of rows in the vector βi.

The M equations in (2.1) can be written in the compact form

(2.2) Y = Xβ + f(z) + ϵ,

where Y = (Y ′
1,Y

′
2, ...,Y

′
M )′, ϵ = (ϵ′1, ϵ

′
2, ..., ϵ

′
M )′ and f(z) = (f ′

1(z),f
′
2(z), ...,f

′
M (z))′ are each

of dimension TM × 1, X = diag(X1,X2, ...,XM ) is of dimension TM × p, p =
∑M

i=1 pi, and β =

(β′
1,β

′
2, ...,β

′
M )′ is a vector of p× 1 parameters.

Furthermore, throughout we will have the following assumptions:

Assumption 1. Xi is fixed with rank pi,

Assumption 2. plim 1
T (X

′
iXi) is non-singular with finite and fixed elements.

Assumption 3. plim 1
T (X

′
iXj) is non-singular with finite and fixed elements.

Assumption 4. E(ϵiϵ
′
j) = vijIT , where vij designate the covariance between the ith and jth equations

for each observation in the sample. The above expression can be also written as

(2.3) E(ϵ) = 0, E(ϵϵ′) = V ,

V =


v11 v12 ... v1M
v21 v22 ... v2M
...

. . .
...

vM1 vM2 ... vMM


⊗

IT =


V 11 = v11IT V 12 = v12IT ... V 1M = v1MIT

V 21 = v21IT V 22 = v22IT ... V 2M = v2MIT
...

. . .
...

V M1 = vM1IT V M2 = vM2IT ... V MM = vMMIT

 ,

is a TM × TM positive definite symmetric matrix and ⊗ represents the kronecker product. Thus the

errors of each equation are assumed to be homoscedastic and not autocorrelated, but it is also assumed

that there is contemporaneous correlation between corresponding errors in different equations.

Semiparametric models are more flexible than standard linear models since they have a para-

metric and a nonparametric component. They can be a suitable choice when one suspects that the

response y linearly depends on x, but that it is nonlinearly related to z. Yatchew (1997) concentrates

on estimation of the linear component of a semiparametric model and used differencing to eliminate

bias induced from the presence of the nonparametric component. Wang et al. (2007) used higher or-

der differences for optimal efficiency in estimating the linear part by using a special class of difference

sequences. In continuation, let d = (d0, ..., dm) be a m+1 vector, where m is the order of differencing

and d0, ..., dm are differencing weights satisfying the conditions

(2.4)

m∑
j=0

dj = 0,

m∑
j=0

d2j = 1.

Now, we define the (T −m)× T differencing matrix D whose elements satisfy (2.4) as (see Yatchew,

2003 for some examples)

D =


d0 d1 ... dm 0 0 ... 0

0 d0 d1 ... dm 0 ... 0
...

. . .
...

0 0 ... 0 d0 d1 ... dm

 .

Imposing the differencing matrix to the model (2.2), permits direct estimation of the parametric

effect. In particular, it takes

(2.5) (IM ⊗D)Y = (IM ⊗D)Xβ + (IM ⊗D)f(z)+ (IM ⊗D)ϵ.
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Since the data have been reordered so that the z’s are close, the application of the differencing

matrix D in model (2.5) removes the nonparametric effect in large samples (Yatchew, 2000). Thus,

the underlying model is rewritten as

(2.6) Ỹ
.
= X̃β + ϵ̃,

where Ỹ = (IM ⊗D)Y , X̃ = (IM ⊗D)X, ϵ̃ = (IM ⊗D)ϵ.

3 Difference-Based Ridge Estimator

It is well-known that adopting the linear model (2.6), the unbiased estimator of β is the following

generalized difference-based estimator for SUS model given by

(3.1) β̂
SUS
GD = CD

−1X̃
′
VD

−1Ỹ , CD = X̃
′
VD

−1X̃.

It is observed from (3.1) that the properties of the generalized difference-based estimator of

β depend heavily on the characteristics of the information matrix CD. If the CD matrix is ill-

conditioned (near dependency among various columns of CD), then the β̂
SUS
GD produce unduly large

sampling variances. Moreover, some of the regression coefficients may be statistically insignificant

with wrong sign and meaningful statistical inference become difficult for the researcher. As a remedy,

following Hoerl and Kennard (1970), we suggest to use the following estimator namely generalized

difference-based ridge estimator in SUS model

(3.2) β̂
SUS
GD (K) = CD(K)−1X̃

′
VD

−1Ỹ ,CD(K) = CD +K,K = diag(K1,K2, ...,KM ),

where Ki = kiIpi , ki ≥ 0 are the shrinking parameter for i = 1, ..,M .

Now consider the following set of linear non-stochastic constraints

(3.3) Riβi = ri, i = 1, ...,M

for a given qi × pi matrix Ri with rank qi < pi and a given qi × 1 vector ri. The full row rank

assumptions are chosen for convenience and can be justified by the fact that every consistent linear

equation can be transformed into an equivalent equation with a coefficient matrix of full row rank.

Subject to the linear restrictions (3.3), the generalized restricted difference-based estimator is given

by

(3.4) β̂
SUS
GRD = β̂

SUS
GD −CD

−1R′(RCD
−1R′)−1(Rβ̂

SUS
GD − r),

where R = diag(R1,R2, ...,RM ) and r = (r′1, r
′
2, ..., r

′
M )′ are q× p and q× 1 matrices (q =

∑M
i=1 qi).

So, the generalized restricted difference-based ridge estimator in SUS model can be written as

β̂
SUS
GRD(K) = β̂

SUS
GD (K)−CD(K)−1R′[RCD(K)−1R′]−1[Rβ̂

SUS
GD (K)− r].(3.5)

Then it is easy to see that the proposed estimators are restricted with respect to Rβ = r. It is

also clear that for K = 0, we get β̂
SUS
GRD(0) = β̂

SUS
GRD.

4 Biases and MSE Expressions

In this section, we calculate the risk function for the proposed estimator given in previous section. For

calculating the risk function of the proposed estimators in the last Section and driving a necessary
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and sufficient condition for the superiority of β̂
SUS
FGRD(K) over β̂

SUS
FGD, first we obtain a new formula

for β̂
SUS
GRD(K) which simplifies the calculation of risk function as follows:

β̂
SUS
GRD(K) = ND(K)X̃

′
V −1

D Ỹ −ND(K)CD(K)β0 + β0,(4.1)

where, β0 = R′(RR′)−1r and

(4.2) ND(K) = CD(K)−1 −CD(K)−1R′[RCD(K)−1R′]−1RCD(K)−1.

Then, we can calculate the bias and covariance matrix of β̂
SUS
GRD(K) by using equation (4.1) as

follows:

E[β̂
SUS
GRD(K)− β] = −KND(K)β,(4.3)

and

Cov[β̂
SUS
GRD(K)] = ND(K)CDND(K).

(4.4)

With direct calculation using CD = CD(K) − K , we conclude that ND(K)CDND(K) =

ND(K)−ND(K)KND(K) and in particular, ND(0)CDND(0) = ND(0) when K = 0. Therefore,

the risk function of β̂
SUS
GRD(K) and β̂

SUS
GRD are

(4.5) MSE[β̂
SUS
GRD(K),β] = ND(K)−ND(K)KND(K) +KND(K)ββ′ND(K)K,

(4.6) MSE[β̂
SUS
GRD,β] = ND(0).

5 MSE-Superiority

In this section, we provide necessary and sufficient conditions for which the difference-based ridge

estimator β̂
SUS
GRD(K) out performs the differencing estimator β̂

SUS
GRD in the sense of having smaller

MSE.

From (4.5) and (4.6), under Rβ = r the MSE difference is given by

∆ = MSE(β̂
SUS
GRD,β)−MSE[β̂

SUS
GRD(K),β]

= ND(0)−ND(K) +ND(K)KND(K)−KND(K)ββ′ND(K)K.(5.1)

Lemma 5.1. The Cov[β̂
SUS
GRD(K)] is consistently smaller than Cov(β̂

SUS
GRD), that is to say the following

inequality always holds for any arbitrary K > 0

∆̃ = Cov(β̂
SUS
GRD)− Cov[β̂

SUS
GRD(K)] > 0.

Moreover, ∆̃ is monotonously increased with respect to K.

Theorem 5.1. Let us be given the estimator β̂
SUS
GRD(K) under the linear regression model with true

restrictions Rβ = r. The MSE difference ∆ is nonnegative definite if and only if

β′G+β ≤ 1,(5.2)

where G = 2k−1P + (PCDP )+.

It is important to note that without taking the restriction k1 = k2 = · · · = kM = k > 0,

obtaining the MSE superiority is not an easy job. However, one can extend this result to a more

general case for further research.
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6 Upper Bound For Ridge Parameter

In the process of determining K, on one side, we must control the condition number of CD(K) to

a lesser level if we want to avoid the instability of estimated coefficients brought by the morbidity of

CD. Hence, we must do our best to let the ridge matrix K be big. Furthermore, we know the bigger

the K is, the smaller the covariance of the estimated coefficients is. It implies that the estimator to

be more stable. On the other side, we know, in view of the biased estimator, when the K is smaller,

the estimator will be better (the β̂
SUS
GRD(K) will be apart badly from the actual β as K increasing).

In other words, we must comply some principles to select K.

Belsley et al. (1980) proposed that the multicollinearity would take effect apparently as the con-

dition number of CD is bigger than 10. The correlation of the variables of X̃ is strong comparatively

when the condition number of CD is between 30 and 100. While the condition number is bigger than

100, the correlation would become very strong and the estimated coefficients is very unstable. They

suggested that we can obtain the good and stable coefficients if the condition number of CD is not

bigger than 10. Based on this criterion, we can easily choose the k such that the condition number of

CD is reduced to 10 (see Liu, 2003).

Although the criterion mentioned above is simple, our problem to select K is not yet completely

solved. Therefore, we give a range to select K in Theorem 5.1.

Theorem 6.1. Let us be given the estimator β̂
SUS
GRD(K) under the linear regression model with true

restrictions Rβ = r and β ̸= β0. The MSE difference ∆ is nonnegative definite if

k ≤ 2

β′Pβ
.(6.1)

7 Monte Carlo Study

In this section, we proceed to comparison of the proposed estimators numerically. We will compare

the trace of MSE[β̂
SUS
GRD(K),β] and MSE(β̂

SUS
GRD,β) and define scalar ∆ as

∆ = tr(∆) = tr[ND(0)]− tr[ND(K)] + tr[ND(K)KND(K)]− β′ND(k)K2ND(K)β.(7.1)

Our sampling experiment consists of different combinations of ki. In this study we simulate the

response for M = 3 equations and T = 100 with 105 iterations from the following model:

Y = Xβ + f(z)+ ϵ,(7.2)

where β1 = β2 = β3 = (1.5, 2, 3,−1, 5), for i = 1, ..., T, xi ∼ N5(µx,Σx) with

µx =


2.5

2

3

1

−1

 , Σx =


1 rx rx rx rx
rx 1 rx rx rx
rx rx 1 rx rx
rx rx rx 1 rx
rx rx rx rx 1

,

where rx = 0.99, ϵ ∼ NTM (0,V ) which vii = 1 and vij = rϵ = 0.95 for i, j = 1, ...,M, i ̸= j. We

consider the following three functions as nonparametric parts:

f1(zi) =
√

zi(1− zi) sin
( 2.1π

zi + 0.05

)
, f2(zi) =

1

9

9∑
j=1

ϕ
(
zi; j, (j/10)

j
)
, f3(zi) =

1

6

8∑
j=1,j ̸=4,6

ϕ
(
zi; j,

(
(j + 2)/10

)j)
,

where ϕ(x;µ, σ2) is a normal density function with mean µ and variance σ2 for zi = 10i/T .

The main reason for taking such functions is to determine how the estimators are optimal in the

sense of making better coverage. In model (2.6) the parametric effect, β, is estimated by a differencing
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Table 1: Matrices of linear restrictions used during simulation study
R1 R2 R3

1 2 4 5 2 -2 1 4 5 5 1 1 4 5 5

-2 -1 3 1 2 -1 2 3 -3 0 -1 -1 3 3 1

-1 2 3 1 2 1 2 4 -1 -2 -2 3 8 0 1

1 3 2.1 -1 4.13 3 2 5 -1 4.75 1 1 3 -2 3

Table 2: Evaluation of estimators at different values ki for model (7.2)
ki 0 1 2 3 4 5 6 7 8

Coefficients

Eq.1

β̂1 1.54858 1.54433 1.54019 1.53616 1.53223 1.52840 1.52467 1.52103 1.51748

β̂2 1.98380 1.98522 1.98660 1.98794 1.98925 1.99053 1.99177 1.99298 1.99417

β̂3 3.07231 3.06599 3.05982 3.05382 3.04798 3.04228 3.03672 3.03130 3.02602

β̂4 -1.04237 -1.03866 -1.03505 -1.03153 -1.02811 -1.02477 -1.02151 -1.01834 -1.01524

β̂5 4.95319 4.95729 4.96127 4.96516 4.96894 4.97263 4.97622 4.97973 4.98315

Eq.2

β̂1 1.49880 1.49839 1.49799 1.49759 1.49720 1.49681 1.49643 1.49605 1.49568

β̂2 1.98797 1.98388 1.97983 1.97584 1.97190 1.96802 1.96418 1.96039 1.95665

β̂3 3.00556 3.00745 3.00932 3.01117 3.01299 3.01479 3.01656 3.01832 3.02005

β̂4 -1.00205 -1.00275 -1.00344 -1.00412 -1.00479 -1.00546 -1.00611 -1.00676 -1.00740

β̂5 4.99953 4.99937 4.99921 4.99905 4.99890 4.99875 4.99860 4.99845 4.99830

Eq.3

β̂1 1.80621 1.80637 1.80653 1.80669 1.80686 1.80702 1.80718 1.80734 1.80750

β̂2 1.96062 1.96060 1.96058 1.96056 1.96054 1.96052 1.96050 1.96048 1.96046

β̂3 3.11373 3.11379 3.11385 3.11391 3.11397 3.11403 3.11409 3.11415 3.11421

β̂4 -0.96500 -0.96498 -0.96496 -0.96494 -0.96493 -0.96491 -0.96489 -0.96487 -0.96485

β̂5 4.82064 4.82055 4.82045 4.82036 4.82026 4.82017 4.82007 4.81998 4.81989

b′(β̂)b(β̂) 0 8.742e-05 3.417e-04 7.515e-04 1.306e-03 1.996e-03 2.812e-03 3.746e-03 4.790e-03

tr[Cov(β̂)] 0.021229 0.020779 0.020346 0.019927 0.019523 0.019132 0.018754 0.018389 0.018036

tr[MSE(β̂,β)] 0.021229 0.020867 0.020687 0.020678 0.020829 0.021128 0.021567 0.022136 0.022826

∆ 0 0.000362 0.000541 0.000550 0.000399 0.000100 -0.000338 -0.000906 -0.001597

mse[f̂(z), f(z)] 0.405953 0.402391 0.399008 0.395794 0.392739 0.389835 0.387073 0.384446 0.381905

procedure. Optimal differencing weights do not have analytic expressions but may be calculated easily

using an optimization routine. Hall et al. (1990) present weights to order m = 10. These contain some

minor errors. We use a fourth-order differencing coefficients, d0 = 0.8873, d1 = −0.3099, d2 = −0.2464,

d3 = −0.1901, and d4 = −0.1409 in which case m = 4.

All computations were conducted using the R statistical package. The matrix CD has the

smallest and largest eigenvalues respectively given by: λmin = 52.23, λmax = 6914.11 . Thus the ratio

is equal to λmax/λmin = 132.37 , which shows an existence of multicollinearity in the data set.

After 105 samples are generated, the estimation of parameters, square of bias, trace of covariance,

trace of MSE and mse of nonparametric estimation are computed for different values of k1 = k2 =

k3 = 0, 1, ..., 8 in model (7.2). The results are summarized in Tables 2 and 3.

In Table 3, the ∆̂ for different values of ki = 0, 1, ..., 7, when kj = kl = 0, for considering the

trace of each ki on the ∆̂ is computed.

In Figure 1, the ∆̂ versus k = k1 = k2 = k3 is plotted. In Figure 2, to ponder the behavior of

each ridge parameter ki, solely, the ∆̂ versus each ridge parameter ki, when kj = kl = 0 is plotted.

According to Figure 2, it can be realized that for all combinations of ki, β̂
SUS
GRD(K) is better than

Figure 1: The diagram of ∆̂ versus k.
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Figure 2: The diagram of ∆̂ versus ki.

Table 3: ∆̂ values for different values of ki

(k1, k2, k3) (0,0,0) (1,0,0) (2,0,0) (3,0,0) (4,0,0) (5,0,0) (6,0,0) (7,0,0)

δ̂ 0 2.9340e-04 4.4936e-04 4.7824e-04 3.8959e-04 1.9226e-04 -1.0554e-04 -4.9625e-04

(k1, k2, k3) (0,0,0) (0,1,0) (0,2,0) (0,3,0) (0,4,0) (0,5,0) (0,6,0) (0,7,0)

∆̂ 0 6.7112e-05 8.9622e-05 6.9268e-05 7.7177e-06 -9.3424e-05 -2.3261e-04 -8.5577e-04

(k1, k2, k3) (0,0,0) (0,0,1) (0,0,2) (0,0,3) (0,0,4) (0,0,5) (0,0,6) (0,0,7)

∆̂ 0 1.6561e-06 2.6460e-06 2.9739e-06 2.6435e-06 1.6589e-06 2.3905e-08 -2.2576e-06

β̂
SUS
GRD if ki ≤ a∗i , which a∗i = 2

β′
iP iβi

, when kj = kl = 0, and it is equal to 5.68, 4.06 and 6.42 in

equations 1, 2 and 3, respectively. Furthermore, in each case, the maximum of ∆̂ is obtained when

ki equals to median range of (0, a∗i ) i.e.,
a∗i
2 = 1

β′
iP iβi

(the optimum values of ki for superiority of

β̂
SUS
GRD(K) with respect to β̂

SUS
GRD).
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RÉSUMÉ (ABSTRACT) This article considers estimation in the seemingly unrelated

semiparametric (SUS) models, when the explanatory variables are affected by multi-

collinearity. It is also suspected that some additional linear constraints may hold on

the whole parameter space. In sequel we propose difference-based and difference-based

ridge type estimators combining the restricted least squares method in the model under

study. Necessary and sufficient conditions for the superiority of the ridge type estima-

tor over the non-ridge type estimator for selecting the ridge parameter K are derived.

Lastly, a Monte Carlo simulation study is conducted to estimate the parametric and

non-parametric parts. In this regard, local linear regression method for estimating the

non-parametric function are used.
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