
Copula based Probabilistic Measures of Uncertainty with Applications   

 

Kumar, Pranesh 
University of Northern British Columbia, Department of Mathematics and Statistics            
Prince George, BC, Canada, V2N 4Z9 
E-mail: kumarp@unbc.ca 
 

1. Introduction 
Probabilistic uncertainty may be viewed as one associated with a random outcome of an experiment  
or which is associated with the manner in which data are collected and analyzed following 
statistical designs. Often such type of uncertainty is summarized in terms of bias, standard error, 
and measures based on the statistical probability distributions. Shannon [12] laid the mathematical 
foundation of information theory in the context of communication theory and  defined a 
probabilistic measure of uncertainty referred to as entropy. However earlier contributions in this 
direction have been due to Nyquist [11] and Hartley [4].   
 
Let two random variables be  and  with respective marginal probability distributions 

( ) and ( ) and the joint probability distribution 

( ) where   is the probability of  a pair ( ) belonging to the 

rectangle   following the partitioning of codomain of  and .   

 
The measure of uncertainty associated with the variable , called entropy,  is defined as 

. The uncertainty takes the maximum value when all probabilities are equal, 

i.e.,  . The bounds for  are: .  The joint entropy of    and 

 is defined as  
  

In case  and  are independent,    and the entropy of the joint distribution equals 

the sum of respective entropies of  and , i.e., .  The conditional 

entropy   which is the amount of uncertainty of  remaining given advance knowledge 

of  and is    
  

where  is the conditional probability of  taking a value  given that  has assumed  a 
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value . The quantity is 

called the mutual information or information transmission  (distance from statistical independence) 
between  and . Mutual information in terms of the Kullback-Liebler divergence between joint 
distribution and the two marginal distributions [8] is defined as  

  
To transmit , how many bits on average would it save if both ends of the line knew ? We can 
answer this question by calculating information gain   

  
or the relative information gain [9]: 

 
which shows how much information about  diminishes the uncertainty of  relative to the initial 
uncertainty of .  A symmetrical relative information gain measure is defined by 

 
which expresses the uncertainty from the joint distribution of  and  to the uncertainty in case 
of independence.     
 
2. Copula Functions  
Sklar's theorem [13] states that any multivariate distribution can be expressed as the -copula 
function  evaluated at each of the marginal distributions. Copula is not unique 
unless the marginal distributions are continuous. Using probability integral transform, each 

continuous marginal  has a uniform distribution on [ ] where  is the 

cumulative integral of  for the random variable   . The -dimensional 

probability distribution function  has a unique copula representation  
  

The joint probability density function is written as  
  

where  is each marginal density and coupling is provided by copula density  
  

if it exists. In case of independent random variables, copula density  is identically 
equal to one. The importance of the above equation ( ) is that the independent portion 

expressed as the product of the marginals can be separated from the function (  

describing the dependence structure or shape. The dependence structure summarized by a copula is 
invariant under increasing and continuous transformations of the marginals.  
The simplest copula is independent copula 

  
with uniform density functions for independent random variables. An empirical copula may be 
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estimated from the  pairs of data   by  

  
where  and   are the rank statistics of and  respectively.   
  
Frécht [3]–Hoeffding [5]  lower and upper bounds for copula respectively are 

  

             

Relationships between copula and concordance Kendall's , Spearman's ,  Gini's index : 

  
  
  
 

The Pearson's linear correlation coefficient can not be expressed in terms of copula. The tail 
dependence index of a multivariate distribution describes the amount of dependence in the upper 
right tail or lower left tail of the distribution and can be used to analyze the dependence among 
extreme random events. Joe [6] defines the upper and lower  tail  dependence 

  

  

Copula has lower (upper) tail dependence for  ( ] and no lower (upper) tail 

dependence for  This tail dependence measure is the probability that one variable is 
extreme given that other is extreme. Tail dependence measures are copula-based and copula is 
related to the full distribution via quantile transformations, i.e., 
   
Copulas can be simulated using univariate conditional distributions. The conditional distribution of 

 given first  components is  

  

For  simulation procedure is: (i) Select a random number  from Uniform (0,1) 

distribution and (ii) Simulate a value  from ( ), .   

 
 

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS057) p.5294



3. Copula based Uncertainty Measures  

The entropy measures associated with the joint distribution of  and  using copula density 
function  can be expressed:  

  
 
  
 
  
 

  

 

  

 
Kovacs [9] has established  

 

where  and . 

 
4. Family of the Marshall-Olkin Bivariate Copulas  

Two parameters family of the Marshall-Olkin bivariate copula [9] for  is   

 

 and the copula density function  

 

For this family of copula,    

When α=β=θ, two parameter  reduces to the Cuadras-Aug  [2] family of copulas with one 
parameter. Mercier [10] has shown that the mutual information for the one parameter copula 

 

 

 

 

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS057) p.5295



  

      

 
 
 
 

 
 
Figure 1.  Mutual information and the Marshall-Olkin copula parameter  
 
5.  Application of the Marshall-Olkin Copula based Uncertainty Measures  

For predicting the gas consumption (Y: gallons/100 miles travelled) of an automobile from its size 
and engine characteristics, data [1] from 38 cars were collected on weight (X1: 1000 lb.), engine 
displacement (X2: cubic inches), number of cylinders (X3) and horsepower (X4).   
 

Table 1. Mutual Information using the one-paramater Marshall-Olkin copula. 
 

 Weight Displacement Number of Cylinders Horsepower 
Kendall’s   0.7869 0.6605 0.7937 0.7310 
Copula parameter θ 0.8807 0.7955 0.8850 0.8446 
Mutual Information 0.2855 0.3147 0.2824 0.3042 

  
Mutual information  in Table 1 indicates that the decrease in uncertainty of the car gas 
consumption caused by the knowledge of its weight and number of cyliders  is about the same 
followed by horsepower and displacement. Higher values of copula parameters is an indication of 
higher degree of association between gas consumption and weight and  also with number of 
cylinders and can be selecetd as the best predictors.  The best estimated prediction relationship is 

 However the limitation of the 
Marshall-Olkin copula is that its parameter lies on the interval (0,1) and thus models the positive 
association only.  
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RÉSUMÉ (ABSTRACT)   

 

Uncertainty emerges when there is less information than the total information required for     
describing a system or environment. Uncertainty prevails in several forms and various kinds of 
uncertainties may arise from random fluctuations, incomplete information, imprecise perception,   
vagueness etc. We consider information-theoretic measures and copula functions to characterize  
uncertainty associated with the probabilistic systems. Copula functions join uniform marginal  
distributions of random variables to form their multivariate distribution functions. Copulas are 
useful because they separate joint distributions into two contributions- (i) marginal distributions 
of each variable and (ii) copula as a measure of dependence. Several families of copulas with 
varying shapes and simulation programs are available providing flexibility in copula based    
modeling. We discuss the applications of Marshall-Olkin family of copulas based information 
measures to analyze uncertainty. 
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