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Let us consider a sample of n independent observations, available from the groups G1, G2, ..., Gs.
Let x the vector of explanatory variables, xT = (x0, x1, ..., xp), where x0 ≡ 1, for convenience. Let
Y denote the polytomous dependent variable with s possible outcomes. We will summarize the n
observations in a matrix form given by:

X =

 1 x11 ... xp1
... ... ... ...

1 x1n ... xpn



Classical Logistic Regression Model

The Classical Logistic Regression (CLR) model assumes that the posterior probabilities have
the form:

P (Gk | x) =

exp

βk0 +
p∑
j=1

βkjxj


s∑
i=1

exp

βi0 +
p∑
j=1

βijxj


where k = 1 , 2 , ... , s− 1 and B s = 0. In this paper the group s is called reference group. The model
involves (s− 1) (p+ 1) unknown parameters. The log-likelihood function is given by:

L (B | Y,x) =
n∑
i=1

s∑
k=1

Ykiln [P (Gk | x i)]

where Y = (Y1 , ... ,Yn)T and Yi = (Y1i, ..., Ysi), with Yki = 1 if Y = k , and Yki = 0 otherwise.
Thus:

∂

∂βkj
L (B | Y,x) =

n∑
i=1

xij (Yki − P (Gk | x i))

The Maximum Likelihood Estimator (MLE) B̂ is obtained by setting the derivatives to zero
and solving for B. The mostly used iterative method is the Newton-Raphson. In practice, the
estimation of unknown parameters is affected by the data’s properties. Albert and Anderson (1984)
suggested a sample classification into three categories: complete separation, quasi-complete separation
and overlap. They also proved that the MLE do not exist for complete and quasi-complete separation.
Different approaches to deal with separation can be found in Heinze and Schemper (2002), Rousseeuv
and Christmann (2003), for binary response, and Andruski-Guimarães and Chaves-Neto (2009), for
polytomous response.

Our approach to solve the multiple group problem is to provide a simple and direct generalization
of the Hidden Logistic Regression model, proposed by Rousseeuv and Christmann (2003). We consider
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n unobservable independent variables T1, ... , Tn, where each Ti has s possible values, γi , ... , γs.
Thus, we observe Yi = j with a P (Yi = j | Ti = γk) = δjk probability, where

∑s
j=1 δjk = 1 and

δjj = maxk=1,...,s {δjk}.
The maximum likelihood estimator for Ti, if Yi = j, is T̂ML,i = γj . In a model with n responses

yij , i = 1 , ... , n and j = 1 , ... , s, where yij = 1, if Yi = j, and yij = 0, otherwise, we can define the
variable given by:

ỹij =
s∑

k=1

yikδkj

Let us keep in mind that in the CLR model, δjj = 1 and δjk = 0, if j 6= k. The log-likelihood
function is given by:

L
(
θ | Ỹ , X

)
=

n∑
i=1

s−1∑
j=1

ỹjiµj − ln

1 +
s−1∑
j=1

exp (µj)

 ,

where µj = θj0 + θj1x1 + θj2x2 + ...+ θjpxp, j = 1 , 2 , ... , s - 1.
The MEL estimators are the maximizers of the log-likelihood function, which is strictly concave.

The main advantage of the HLR model is that the MEL estimator always exists and it is unique,
even when the data set has no overlapping. According to Rousseeuv and Christmann (2003), Copas
(1988) found that accurate the estimation of δ0 and δ1, in the binary case, is very difficult, unless
n is extremely large. The symmetric approach is to chose a constant γ > 0 and to set δ0 = γ and
δ1 = 1− γ, where γ is small so that terms in γ2 can be ignored, and δ0 < π̂ < δ1, where π̂, δ0 and δ1
are given by δ1 = 1+π̂δ

1+δ , δ0 = π̂δ
1+δ , π̂ = max {δ , min (1− δ ; π̄)}, π̄ = 1

n

∑n
i=1 yi.

For a detailed explanation, and discussion, see Copas (1988) and Rousseeuv and Christmann
(2003). In this paper, we consider that the probability of observing the true status, which is given by:

P (Yi = j |Ti = γj) = δjj ,

should be higher than 0.5, this is, 0.5 < δjj < 1, furthermore
∑s
k=1,k 6=j δjk < δjj . Therefore, we cannot

take the estimate given by π̄j = 1
n

∑n
i=1 yij , j = 1 , ... , s, once π̄j can be smaller than 0.5. Our default

choice will be δ = 0.99, and set δjj = δ and δjk = 1−δ
s−1 .

Quadratic Logistic Regression Model

An extension of the linear logistic model is to include quadratic and multiplicative interaction
terms. The Quadratic Logistic Regression (QLR) Model can be given by:

Q (Gk | X) =
exp

(
χ
k

)
s∑
i=1

exp
(
χ
i

)
where

χ
k

= αk0 +
p∑
i=1

αkix
2
i +

pC2∑
i=p+1

αkixj′xj′′ +
pC2+p∑
i=pC2+1

αkixj

k = 1 , 2 , ... , s− 1 , χ s = 0, and j, j′′ = 1 , 2 , ... , p , j′ = 1 , 2 , ... , p− 1.
The model involves [(s− 1) (p+ 1)]

(
1 + p

2

)
unknown parameters and the estimaton of these param-

eters follows the same lines as that taken by the CLR model. However, as pointed out by Anderson
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(1975), for a large number of independent variables, the number of extra parameters can be render an
unworkable problem, so that a reduction dimension method can be useful to way out of this problem.
Furthermore, large number of parameters should be avoided, because of the risk of over-fitting. The
quadratic term also can be written as:

χ
k

= αk0 + xTΩkx + αTk x

where Ωk = V−1
k −V−1

s , and Vk is the dispersion matrix in Gk, k = 1, 2, ..., s− 1.
An approximation, proposed by Anderson (1975), gives a quadratic term with a reduced number of
parameters. This approximation is given by the spectral decomposition:

Ωk =
p∑
j=1

λjkljkl
T
jk

where the λjk are the eigenvalues of Ωk, ordered in decreasing size, λ1k ≥ λ2k ≥ . . . ≥ λpk, and the
ljk are the corresponding eigenvectors. In this case, Ωk can be given by:

Ωk
∼= λklkl

T
k

In the sequence, each lTj = (lj1, ..., ljp) is normed with the constraints:

p∑
k=1

l2jk = 1

Since this approach is not convenient for computing, an alternative parameterization is suggested:

χ
k

= αk0 + µk(dTk x)2 + αTk x

where µk = sgn(λk), k = 1, ..., s − 1, dkj = lkj/
√
|λk|, j = 1, ..., p. The log-likelihood function is

maximized with respect to the αkj and dkj unrestrictedly 2(s−1) times for µk = ±1 and to take as
maximum likelihood estimates those values of the parameters which give the greatest of these 2(s−1)

values of the log-likelihood function. With this approximation, there are (s−1)p unknown parameters.

Principal Components Analysis

Let us consider n observations of p continuous variables, given by the matrix X. Since the
observations x can be standardized, the sample covariance matrix, S, can be given by:

S =


s11 s12 ... s1p

s22 ... s2p
. . .

...
spp

 =
1

n− 1
XTX.

The matrix S can be written as S = VTΛV, where Λ = diag (λ1, ..., λp) and V being orthogonal.
Let Z the matrix whose columns are the principal components, given by Z = XV, where v1, ...,vp
are the eigenvectors of the matrix S, associated to the eigenvalues λ1 ≥ ... ≥ λp, so that the matrix of
observations can be written as X = ZVT.

Furthermore, matrices Z and V can be written as:

Z =

 1 z11 ... z1q z1(q+1) ... z1p
... ... ... ... ... ... ...

1 zn1 ... znq zn(q+1) ... znp

 =
(
Z(q)|Z(r)

)
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and

V =


1 0 ... 0 0 ... 0
1 v11 ... v1q v1(q+1) ... v1p
... ... ... ... ... ... ...

1 vp1 ... vpq vp(q+1) ... vpp

 =
(
V(q)|V(r)

)

In order to improve the parameter estimation under multicollinearity, and to reduce the dimen-
sion of the problem, Aguilera, Escabias and Valderrama (2006) propose to use as covariates of the
logistic regression model a reduced set of optimum principal components of the original covariates.
This approach, called Principal Component Logistic Regression (PCLR) model, provide an accurate
estimation of the parameters in the case of multicollinearity. Furthermore, cf. Barker and Brown
(2001), estimates obtained via principal components can have smaller mean square error than esti-
mates obtained through standard logistic regression.

The generalization of the PCLR model for polytomous responses does not require a complex
formulation. We begin by computing the covariance matrix S. Then the matrix X can be written as:

xik =
p∑
j=1

zijvkj ,

so that

P (Gt | Zv i) =

exp

βt0 +
p∑

k=1

p∑
j=1

zijvkjβtk


s∑

m=1

exp

βm0 +
p∑

k=1

p∑
j=1

zijvkjβmk

 ,

where i = 1 , ... , s, j = 0 , ... , p, t = 1 , ... , s and βsj = 0.

Making γtj =
p∑

k=1

vkjβtk, the PCLR model extended to polytomous responses, with q principal

components, is given by:

P (Gt | Zv i) =

exp

βt0 +
q∑
j=1

zijγtj


s∑
i=1

exp

βi0 +
q∑
j=1

zijγmj

 ,

In order to estimate the principal components model’s parameters, one can apply the Maximum
Likelihood Method. With respecto to the QLR model, we propose to use as covariates the principal
components of the [(s− 1) (p+ 1)]

(
1 + p

2

)
matrix I(χ), whose elements are given by:

∂2L
(
χ
)

∂χjm∂χjm′
= −

n∑
i=1

xm′ixmi [Q (Gj |xi)] [1−Q (Gj |xi)]

and

∂2L
(
χ
)

∂χjm∂χj′m′
=

n∑
i=1

xm′ixmi [Q (Gj |xi)]
[
Q
(
Gj′ |xi

)]
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where j, j′ = 1, 2, ..., (s− 1) and m,m′ = 1, 2, ..., p. The parameter estimaton follows the same lines as
that taken by the CLR model with linear discriminant functions.

Simulations

In this section we consider a benchmark data set, Fatty Acid Composition Data, taken from
Brodnjak−Vončina et al. (2005). The purpose is to compare the results provided by the two models,
given by the Correct Classification Rate (CCR), defined as the percentage of observations that are
correctly classified. There are 120 observations, five groups and seven variables, representing the
percentage levels of seven fatty acids, namely palmitic, stearic, oleic, linoleic, eicosanoic and eicosenoic
acids. In this paper we consider five groups: rapeseed (G1), sunflower (G2), peanut (G3), corn (G4) and
pumpkin (G5) oils. The original data set have eight groups, and can be found in Brodnjak−Vončina
et al. (2005). In this paper we use the group 5 (pumpkin oil) as the reference group. Table 1 displays
the classification matrix for the CLR and PCLR models. Table 2 displays the classification matrix for
the QLR and PCQLR models.

Table 1. Classification Matrix. Fatty acid data. Linear Discriminant.

Model Observed group
Allocated Group

G 1 G 2 G 3 G 4 G 5

HLR

G 1
G 2
G 3
G 4
G 5

0.64 0.00 0.00 0.00 0.36
0.00 0.95 0.00 0.00 0.05
0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 0.70 0.30
0.15 0.00 0.05 0.05 0.75

PCLR (6 p.c.’s)

G 1
G 2
G 3
G 4
G 5

0.64 0.00 0.00 0.00 0.36
0.00 0.95 0.00 0.00 0.05
0.00 0.00 0.96 0.00 0.04
0.00 0.00 0.00 0.80 0.20
0.17 0.06 0.03 0.06 0.68

Table 2. Classification Matrix. Fatty acid data. Quadratic Discriminant.

Model Observed group
Allocated Group

G 1 G 2 G 3 G 4 G 5

QLR

G 1
G 2
G 3
G 4
G 5

0.82 0.00 0.00 0.00 0.18
0.00 1.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 1.00

PCQLR (6 p.c.’s)

G 1
G 2
G 3
G 4
G 5

0.73 0.00 0.00 0.00 0.27
0.00 1.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 0.90 0.10
0.00 0.03 0.00 0.06 0.91

Conclusions

The purpose with this job is to develop and implement a direct generalization for the Quadratic
Logistic Regression model, for polytomous response, which allows the reduction of the dimensions in
the problem, and to explore the performance of the model when compared to the Classical Logistic
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Regression model with discriminant functions. In order to solve the problem that arises with the
great number of unknown parameters, we have used the Principal Components Analysis, as well a
generalization of the HLR model, to deal with the complete separation. We can see thet the PCA allows
the reduction of the number of dimensions in a polytomous QLR model, with continuous variables and
avoiding the multicollinearity of these variables. For practical purposes, the main advantage of the
HLR model is the existence and uniqueness of estimators. Furthermore, there are not computational
difficulties to implement both approaches. With respect to the performance, we can see that the QLR
model can provide better classification rates than the CLR model.

In the future we intend to study the behavior of the models that were approached with respect
to aspects such as their performance regarding data sets with a reduced number of observations and
the bias of the estimators that were obtained.
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Brodnjak−Vončina,D., Kodba,Z.C. and Novič,C., Multivariate data analysis in classification of veg-

etable oils characterized by the content of fatty acids. Chemometrics and Intelligent Laboratory Systems 75,
pp. 31-43, (2005)

Copas, J. B., Binary regression models for contaminated data. With discussion. Journal of Royal
Statistical Society B, 50 (1988), 225–265.

Heinze, G. and Schemper, M., A solution to the problem of separation in logistic regression, Statistics in
Medicine 21, 2409-2419 (2002)

Rousseeuw, P. J. and Christmann, A., Robustness against separation and outliers in logistic regression,
Computational Statistics & Data Analysis 43, pp. 315-332 (2003)

RÉSUMÉ (ABSTRACT)

Is well known that the logistic regression model are a powerful method widely applied for modeling
the relationship between a categorical dependent variable and a set of explanatory variables. Many
papers on logistic regression have only considered the logistic regression model with linear discriminant
functions, but there are situations where quadratic discriminant functions are useful, and works better.
However, the quadratic logistic regression model involves the estimation of a great number of unknown
parameters, and this leads to computational difficulties when there are a great number of independent
variables. Furthermore, a great number of parameters should be avoided, because of the risk of over-
fitting. This paper proposes to use a set of principal components of the explanatory variables, in order
to reduce the dimensions in the problem, with continuous independent variables, and the computational
costs for the parameter estimation in polytomous quadratic logistic regression, without loss of accuracy.
Examples on datasets taken from the literature show that the quadratic logistic regression model, with
principal components, is feasible and, generally, works better than the classical logistic regression model
with linear discriminant functions, in terms of correct classification rates.
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