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In the last decades the academic community has devoted a lot of attention to the understanding,

modeling, and forecasting of the short-term interest rate process, given its central role in many practical

applications such as the pricing of bond and interest-rate dependent derivative securities and (interest

rate) risk management.

In one approach, recent studies in continuous time have focused on the description and estima-

tion of (possible) non-linearities in the drift and diffusion functions of the short rate using parametric

and semi- or even non-parametric approaches. Among others, it is worthwhile citing the results of

Aı̈t-Sahalia (1996b) who proposed a general parametric specification nesting most existing parametric

interest rate models. Given the potential risk of model misspecification inherent in the parametric as-

sumption yielding significant economic implications in the pricing of interest rate derivatives, nonpara-

metric modeling has received considerable attention. Aı̈t-Sahalia (1996a) proposed a non-parametric

estimator of the diffusion function from discretely observed data in connection with a parametric drift

function. Stanton (1997) proposed nonparametric estimators of the drift and diffusion functions based

on different orders of approximation of the Itô process using the infinitesimal generator and Taylor

series expansions. Sam and Jiang (2009) extended the nonparametric estimator proposed by Stanton

(1997) by incorporating the informative potential of a panel of yields in the nonparametric estimation.

They found in simulations that the proposed estimator can lead to significant efficiency gains relative

to the nonparametric estimator constructed using only the time series of observed short rates, reducing

problems related to spurious non-linearities in the drift function.

On the other hand, different time series models of the short rate dynamics in the discrete

setting have recently been proposed in order to take into account the regime-switching behavior and

the heteroskedasticity and high persistence over time of the short rate process. These models also try

to relate short rates with macroeconomic fundamentals like indicators of inflation and real activity;

see, among others, Audrino (2006) and Audrino and Medeiros (2010). In these studies, the researchers

showed that such information is highly relevant for improving the fit and the prediction of the short

rate. Indices of inflation and real activity are found to be among the main determinants, driving both

the local short rate conditional dynamics in the different regimes and the way in which regime switches

are determined.

This study follows the idea of extending the information set for the estimation of the first two

conditional short rate moments (i.e. drift and diffusion functions) by considering exogenous variables

such as other yields and/or observable indicators of macroeconomic fundamentals. It applies a stan-

dard functional gradient descent (FGD, introduced in Audrino and Bühlmann, 2003, and generalized

in Audrino and Trojani, 2007) algorithm based on regression trees with the main goal of finding the

most relevant forces driving the short rate dynamics among a large pool of possible candidates. FGD

is strictly related to boosting, a multiple prediction and aggregation scheme for classification proposed

in the 1990’s. In our study, we apply boosting to the nonlinear time series analysis of the short rate

dynamics by exploiting its FGD representation. To model the short rate process we will use as start-

ing models in the FGD procedure approaches proposed in the literature that use only the information

included in the short rate time series. Afterwards, we will include in the set of possible candidates
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yields at other maturities as well as indices of real activity and inflation.

We apply FGD to the time series of monthly US 3-month Treasury bill yields during the time

period between June 1961 and July 2007. Our findings show that the additional yield curve and

macroeconomic information incorporated by the FGD approach cannot be neglected and produces

significantly better fits of the short rate dynamics. Interestingly, the relevant forces driving the

conditional mean and variance functions of the short rate process are significantly different: In fact,

conditional mean dynamics are driven mainly by the macroeconomic factors. In contrast, the most

relevant predictor is always “Time” for volatility, indicating that structural breaks in time are highly

relevant for modeling the short rate conditional variance dynamics and cannot be neglected.

Modeling approach

As a starting point, let us consider a time-homogenous Itô diffusion process as a classical con-

tinuous time univariate model of the short rate rt at time t:

(1) drt = µ(rt)dt+ σ(rt)dwt,

where wt is the standard Brownian motion with t ∈ [0, T ], and µ(rt) and σ(rt) are, respectively,

the drift and volatility functions. In particular, most existing models of the short-term interest rate

process are nested in the parametric specification introduced by Aı̈t-Sahalia (1996b):

(2) drt = (α0 + α1rt + α2r
2
t + α3r

−1
t )dt+ σrγt dwt,

where (α0, α1, α2, α3, σ, γ) are unknown parameters and both drift and volatility functions are specified

to capture potential nonlinearities. For example, by restricting (α2 = α3 = 0, γ = 1
2) we get the Cox

et al. (1985) model.

In this study, we focus on a discretized general version of the continuous-time model (1) of the

form:

(3) ∆rt = rt+δ − rt = µt + εt,

where

(4) εt =
√

htzt, µt = g(Φt−1), ht = f(Φt−1),

for some unknown conditional mean and variance functions g(·) ∈ R and f(·) ∈ R+, respectively, and

a sampling interval δ > 0. (zt)t∈Z is a sequence of independent identically distributed innovations

with zero mean and unit variance. In model (4), the relevant conditioning information, denoted by

Φt−1, is assumed to be as wide as possible. Specifically, we set Φt−1 = {r̃t−1,x
ex
t−1}, where r̃t−1 =

{rt−1, rt−2, . . .} and xex
t−1 is a vector of all other relevant exogenous variables used for prediction. In

this study, typical factors included in xex
t−1 are yields at other maturities, the spread between the long

and the short rates, and some relevant macroeconomic variables such as indices for real activity and

inflation already introduced in previous studies of the short rate dynamics such as Audrino (2006).

Clearly, such a definition of Φt−1 allows us to exploit all the additional predictive information included

in the term structure and in the macroeconomic variables for estimating the dynamics of the short

rate process. In particular, this model allows for a broad variety of (possibly nonlinear) shapes of the

conditional mean and variance functions in reaction to past market and macroeconomic information.

It is immediate seen that the general model (3)-(4) nests the discretized version of the Aı̈t-Sahalia

(1996b) parametric continuous-time model (2). Taking the heteroskedasticity and high persistence

over time features shown by the short rate process explicitly into account, one can easily specify the

conditional variance function ht = f(·) to include the parametric GARCH(1,1) dynamics:

(5) ht = f(Φt−1) = f1(Φt−1) + w + aε2t−1 + bht−1,
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where w, a and b are the unknown parameters, and f1(Φt−1) an unspecified function depending on the

whole past information set. Similarly, the model (3)-(4) nests the threshold-based regime-switching

model proposed by Audrino (2006), too.

Various nonparametric estimators of the discretized drift and diffusion functions g and f have

been proposed in the finance literature. In particular, we want to review here the approach proposed

by Stanton (1997) and recently generalized by Sam and Jiang (2009). Using the infinitesimal gener-

ator and Taylor series expansion, Stanton (1997) proposed nonparametric estimators of the drift and

diffusion functions based on various orders of approximation of the Itô process. In greater details, he

proposes the following nonparametric estimators for g(·) and f(·) based on a first-order approximation

of the discretized process (3)-(4):

ĝStanton(r) =

∑T
t=1(rt+1 − rt)Kh(rt − r)∑T

t=1Kh(rt − r)
and(6)

f̂Stanton(r) =

∑T
t=1(rt+1 − rt)

2Kh(rt − r)∑T
t=1Kh(rt − r)

,(7)

where Kh(u) = 1
hK(u/h) and K(·) is a standard kernel function that satisfies usual regularity con-

ditions. In this case, the conditioning information set Φt−1 reduced to past values of the short rate

process and no exogenous information is considered. The estimators (6) and (7) are obtained by set-

ting δ = 1 a fixed sampling interval. In fact, our empirical study is based on monthly data and the

sampling interval δ will be equal to one month.

Sam and Jiang (2009) generalized Stanton’s approach by enlarging the information set considered

in a pure endogenous estimation. They proposed a nonparametric estimator based on a panel of yields

that is able to reduce some of the problems arising when using the estimators (6)-(7). In this study we

will proceed along similar lines, enlarging the conditioning information set even further by including

observable indicators of macroeconomic fundamentals in addition to yields at other maturities.

Estimation of the conditional mean and variance functions using FGD

The main idea of FGD is to compute estimates ĝ(·) and f̂(·) for the general, nonparametric

conditional mean and variance functions g(·) and f(·) which minimize a loss function λ (generally

chosen to be the negative pseudo log likelihood) under some constraints on the form of ĝ(·) and f̂(·).
These constraints are required to ensure computational feasibility, mainly in a generalized multivariate

setting. More specifically, given an initial estimate ĝ0(·) and f̂0(·), the estimates ĝ(·) and f̂(·) are

obtained as additive nonparametric expansions around the starting models, i.e.

ĝ(Φt−1) = ĝ0(Φt−1) +

Mg∑
j=1

B
(g)
j (Φt−1) and(8)

f̂(Φt−1) = f̂0(Φt−1) +

Mf∑
j=1

B
(f)
j (Φt−1),(9)

where the optimal stopping values Mg and Mf are generally estimated to minimize approximations

of the expected prediction error. From the simple estimates of the gradient of the loss function λ,

FGD determines ĝ(·) and f̂(·) as additive nonparametric expansions of ĝ0(·) and f̂0(·) which minimize

the loss function λ. Such nonparametric expansions are based on some simple estimates Bj of the

gradient of the loss function λ in a neighborhood of the initial estimates. These simple estimates are

made using a pre-specified statistical procedure B, called base learner. In the standard algorithm used
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in this study, base learners are regression trees given by:

B
(u)
j (Φt−1) =

L∑
k=1

a
(k)
j,uI[Φt−1∈R(k)

j,u]
, u ∈ {g, f},

where a
(k)
j,· are some constant location parameters, L is the number of end nodes in the decision tree,

and R(k)
j,· are the partition cells of the regression trees. Given that regression trees have the ability to

choose from among a class of predictors exactly those that are the most relevant for estimation and

prediction, we have a perfect tool to provide an answer to our main question regarding the main forces

driving the short rate dynamics.

In our standard FGD procedure, we choose the loss function λ to be the negative log-likelihood

implied by a “nominal” Gaussian distribution assumption for the innovations zt in (4), i.e.

λ(r, g, f) =
1

2
log(2π) +

1

2
log(f) +

1

2f
(r − g)2,

where the constant term 1
2 log(2π) will not affect the optimization. The optimization of λ with

respect to g and f is performed by calculating the corresponding partial derivatives. This step of the

optimization suggests the name Functional Gradient Descent.

The choice of the starting models used in the FGD algorithm is important, since FDG aims

at locally improving the pseudo log likelihood criterion of an initial model estimate by means of

nonparametric additive expansions. Therefore, one should start from adequate initial estimates, in

order to obtain a satisfactory performance. In the real application investigated in the next section,

we will consider as starting models: (i) the discretized parametric Cox et al. (1985) model; (ii) a

generalized version of the parametric Cox et al. (1985) model incorporating GARCH(1,1) dynamics in

the conditional variance equation similar to (5) with f1(Φt−1) = σ2rt; (iii) the discretized parametric

model proposed by Aı̈t-Sahalia (1996b) given in (2); (iv) the nonparametric estimators introduced by

Stanton (1997) and given in (6)-(7); (v) and the threshold-based regime-switching model introduced

by Audrino (2006). Models 1., 3., and 4. are standard models introduced in the literature and used

in practice. Model 2. allows us to already take heteroskedasticity and high persistence of the short

rate process explicitly into account in the starting model. Model 5. is a fair competitor already

incorporating regime-shifts and macroeconomic information and yielding highly accurate estimates.

All details about the standard FGD algorithm used in this study can be found, for example, in

Audrino and Trojani (2007). The main FGD code written in S-PLUS together with some worked out

examples are available for free downloading at

http://www.mathstat.unisg.ch/org/ms/web.nsf/wwwPubInhalteGer/Francesco+Audrino?opendocument

Estimation results

The data used in this study are three-month U.S. Treasury bill rates downloaded on a daily

basis from the Federal Reserve Board web-page. In order to calculate the yields on a monthly basis,

we take the last trading date of each month. The data span the period between June 1961 and July

2007, for a total of 554 monthly observations.

Following the idea proposed by Sam and Jiang (2009), we download from the FED page yields

at maturities 6 month, 1 year, 3 year, 5 year, and 10 year to exploit the possible additional information

included in the yield curve. Moreover, to even further enhance the information set that we are going to

use for the estimation, we also download some classical macroeconomic indicators used in the macro-

finance literature to improve the accuracy of the estimation and prediction of the short rate dynamics;

see, for example, Audrino (2006). We divide the macroeconomic variables into two main groups. The

first group consists of two inflation measures based on the CPI and the PPI of finished goods. The
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second group contains variables that capture real activity: the index of Help Wanted Advertising in

Newspapers (HELP), unemployment (UE) and the growth rate of industrial production (IP).

Results of the FGD estimation obtained using standard cross-validation are reported in Table 1

and, in the case of the Aı̈t-Sahalia (1996b) starting model, illustrated in Figure 1.

Model Iter. Likelihood Percentage of Drift Predictors Percentage of Volatility Predictors

Start End Tot. Time SR TS Macro Tot. Time SR TS Macro

CIR 51 443.799 255.613 51 11.2 25.9 18.5 44.4 49 56.8 0 9.1 34.1

Aı̈t-Sahalia 91 410.769 284.991 47 4.1 13.7 23.3 58.9 53 74.5 12.7 5.5 7.3

Stanton 92 390.029 224.279 49 7.4 11.1 21.0 60.5 51 77.8 3.2 4.7 14.3

CIR-GARCH 5 317.110 271.363 60 16.7 16.7 0 66.6 40 75.0 0 0 25.0

Tree model 7 253.067 224.497 57 12.5 12.5 12.5 67.5 43 28.6 0 14.3 57.1

Table 1: Results of the FGD estimation for the time period between June 1961 and July 2007, for a total of 554

observations. The first column reports on the starting models on which the FGD estimation procedure is applied.

Iter. denotes the optimal number of iterations in the FGD algorithm. The likelihood as a performance measure is

reported for the starting estimates (obtained using the different models) and the final estimates after running the FGD

procedure. Columns 5 to 8 (9 to 14) report the percentage of the different explanatory variables chosen in the FGD

estimation for the drift (volatility) function. Tot. denotes the percentage of times that the FGD procedure chose to

improve the drift (or volatility) function. SR, TS, and Macro denote short rate, term structure yields different than the

short rate, and exogenous macro variables, respectively.

As expected, in the first three cases where the starting model is simple, the FGD approach is

able to improve significantly the likelihood, and the optimal number of smoother that is added to the

initial estimates is quite large (i.e. more than 50 up to 90, depending on the starting model). In these

three cases (CIR, Aı̈t-Sahalia, and Stanton starting models), the final drift and volatility functions

are highly non-linear in the short-rate and react to different past values of a number of exogenous

variables. Comparing the time series dynamics of the starting and the final estimates, we see that the

final drift estimates vary much more and are less smooth than the initial ones.
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Figure 1: The top two panels in the first row contain the drift and volatility functions estimated using the general

parametric model proposed by Aı̈t-Sahalia (1996b). The two panels in the middle row show the final drift and volatility

estimates after running the FGD procedure. Finally, the two panels in the bottom row illustrate the differences between

the estimated drift and volatility time series using the starting Aı̈t-Sahalia (1996b) model (solid lines) and the final FGD

method (dotted lines). The sample period is June 1961 to July 2007, for a total of 554 observations.

When now considering more flexible and complex starting models like the CIR with GARCH
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effects in volatility or Audrino’s tree model that already takes into account regime-shifts in the condi-

tional mean and volatility dynamics driven by macroeconomic variables, the FGD procedure has only

a moderate (but not negligible) impact in the likelihood performance. The number of iterations in

these cases is quite small (i.e. less than 10). As before, both drift and volatility functions are non-linear

in the short rate and depend on other different explanatory variables.

To end this discussion we now focus on the main question this paper poses, namely what are the

main drivers of the drift and volatility dynamics of the short rate process. Results of our estimation

are summarized in Table 1 (columns 5 to 14). Focusing first on the drift estimates, one sees that

the numbers reported in Table 1 clearly show the importance of considering macroeconomic variables

as valuable predictors for the conditional mean dynamics of the short rate process. These predictors

are always the most frequently chosen ones, independently of the starting model from which the

initial drift estimates are computed. This is fully in line with previous empirical evidence that linked

macroeconomic information with the short rate dynamics and, more generally, with the whole term

structure dynamics. No particular macroeconomic indicator seems to be more relevant than the others.

Term structure information is also quite relevant for improving the drift dynamics: yields at other

maturities are chosen about 20% of the time, supporting the evidence shown in Sam and Jiang (2009).

On contrast, positive (or negative) shocks in time are not found to be systematically relevant. As an

implication, the regimes in time that are introduced in classical Markovian regime-switching models

do not seem to be motivated directly from the need for improving the accuracy of the drift estimates.

The role of “Time” as the leading predictor for estimating the volatility dynamics is clearly

highlighted by the number of times it is chosen in the FGD estimation. This finding supports the

idea of having different short rate volatility regimes during which volatility is systematically high

or low. The FGD procedure allows these regimes to be taken into account by introducing some

positive (or negative) shocks in the volatility dynamics during particular time periods, in the same

spirit of the regimes’ construction in Markovian and threshold-based regime-switching type of models.

Macroeconomic information cannot be neglected and is exploited by the FGD algorithm about 20%

of the time (depending on the starting model). Yields at other maturities do not seem to contribute

very much to improving the (initial) volatility estimates of the short rate process.
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