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Abstract 
This paper defined and studies the use of the response and nonresponse distributions for the prediction 
of finite population totals under single-stage sampling, when the sampling design is noninformative 
and missing value mechanism is nonignorable. The proposed predictors employ the response set 
values of the target study variable, and the weights of the response set units. The prediction problem is 
treated by estimating the expectations of the study values for unobserved units in sample – 
nonresponse set, and for non-sample units. The main features of the present predictors are their 
behaviours in terms of the nonignorable nonresponse parameters. Also the use of the best linear 
unbiased predictors and estimators that ignore the nonignorable nonresponse yield biased predictors 
and bias estimators.  
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1.  Introduction 
Survey data may be viewed as the outcome of two processes: the process that generates the values of 
units in the finite population, often referred as the superpopulation model, and the process of selecting 
the sample units from the finite population, known as the sample selection mechanism. Analytic 
inference from sample survey data refers to the superpopulation model. When the sample selection 
probabilities depend on the values of the model response, even after conditioning on the auxiliary 
variables, the sampling mechanism becomes informative (outcome variable is correlated with design 
variables not included in the model) and the selection effects need to be accounted for in the inference 
process. In addition to the effect of complex sample design, one of the major problems in the 
analysis of survey data is the inability to obtain useful data on all questionnaire items from all 
members of the sample. We call this problem nonresponse or missing value problem. In 
short, by nonresponse (or missing value) is meant that the desired data are not obtained for 
the entire sample. For more discussion on nonresponse; see foe example, Särndal, C.E. and 
Lundstorm, S. (2005), and Little and Rubin (2002). 
The plan of this paper is as follows. In Section 2 we discuss response and nonresponse distribution. 
Section 3 justifies unified probability weighted estimators via method of moments in case of 
nonignorable nonresponse. Section 4, is devoted to response likelihood and estimation. Section 5 
discussed the prediction of finite population total under nonignorable nonresponse. We conclude with 
brief conclusions in Section 6. 
 
2. Response and Nonresponse Distributions 
Let { }NU ,...,1=  denote a finite population consisting of N  units. Let y  be the study variable of 
interest and let iy  be the value of y  for the thi  population unit. A predictor is needed for the 

population total of y , ∑∈
=

Ui iyT . A probability sample s  is drawn from U  according to a 

specified sampling design. The sample size is denoted by n . The sampling design induces inclusion 
probabilities for the different units of U . Let ( )sii ∈= Prπ  be the first order inclusion probability 
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of the thi  population unit. Let ( )′= ipii xx ,...,1x , Ui∈  be the values of a vector of auxiliary 

variables, pxx ,...,1 , and { }Nzz ,...,1=z  be the values of known design variables, used for the sample 
selection process not included in the model under consideration. In what follows, we consider a 
sampling design with selection probabilities )Pr( sii ∈=π , and sampling weight iiw π1=  ; 

Ni ,...,1= . In practice, the iπ ’s may depend on the population values ( )zyx ,, . We express this 
dependence by writing:   ),,|Pr( zyxsii ∈=π  for all units Ui∈ . The sample s  consists of the 
subset of U  selected at random by the sampling scheme with inclusion probabilities .,...,1 Nππ  

Denote by ( )′= NII ,...,1I  the N  by 1 sample indicator (vector) variable, such that 1=iI  if unit 
Ui∈  is selected to the sample and 0=iI  if otherwise. The sample s  is defined accordingly as 
{ }1,| =∈= iIUiis  and its complement by { }0,| =∈== iIUiisc . We assume probability 

sampling, so that 0)Pr( >∈= siiπ  for all units .Ui∈  

Denote by ( )′= NRRR ,...,1  the N  by 1 response indicator (vector) variable such that 1=iR  if unit 
si∈  is observed and 0=iR  if unit si∈  is not observed. The response set is defined accordingly as 
{ }1,| =∈= iRsiir  and the nonresponse set by { }0,| =∈= iRsiir . We assume probability 

sampling, so that 0)Pr( >∈= siiπ  for all units .Ui∈  Let the response probability (or propensity 
score)  ),,|Pr(  ),,,|Pr( zyxzyx risirii ∈=∈∈=ψ  for all units si∈  and ii ψφ 1=  be the 
response weight for ri∈ .  
A key issue that must be confronted when dealing with missing data or nonresponse is the relationship 
between the response indicator (vector) variable, the sample selection indicator membership, the study 
variable, and the auxiliary population variable. Little and Rubin (2002) consider three types of 
nonresponse mechanism or missing data mechanism: 
(a) Missing completely at random (MCAR): If the response probability does not depend on the study 
variable, or the auxiliary population variable, the missing data are MCAR. 
(b) Missing at random (MAR) given auxiliary population variable: if the response probability depends 
on the auxiliary population variable but not on the study variable, the missing data are MAR.  
(c) Not missing at random (NMAR): if the response probability depends on the value of a missing 
study variable, the missing data are NMAR. 
In this paper we make distinction between ignorable and nonignorable response mechanism. (a)  The 
response mechanism can be ignored conditional on ix  (or ignorable nonresponse) if: 

 ),|Pr(  ),,|Pr( iii siriysiri xx ∈∈=∈∈  for all possible values iy  
(b)  The response mechanism cannot be ignored (nonignorable nonresponse) if: 

 ),|Pr( ),,|Pr( iii siriysiri xx ∈∈≠∈∈  for all possible values iy  
Before defining the response and nonresponse distribution mathematically, let us introduce the 
following notations: pf  and ( )⋅pE  denote the probability density function ( pdf) and the 

mathematical expectation of the population distribution, respectively, sf  and ( )⋅sE denote the pdf and 
the mathematical expectation  of the sample distribution, respectively, rf  and ( )⋅rE  denote the pdf 
and the mathematical expectation of the response distribution, respectively, and rf  and ( )⋅rE denote 
the pdf and the mathematical expectation of the nonresponse distribution, respectively. 
Eideh (2009) defined and studies the properties of response and nonresponse distributions when the 
sampling design is informative and missing value mechanism is nonignorable. In this paper, from now 
on, we assume that the sampling design is noninformative, that is, ( ) ( )θγθ ,|,,| iipiis yfyf xx = . 
Using the results derived in Eideh (2009), we have: 

(a) The (marginal) response pdf of iy  is: 
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     ( ) ( ) ( )
( )iip

iipiiip
iir E

yfyE
yf

x
xx

x
|

|,|
|

ψ
ψ

=                                              (1)                                                    

(c) The (marginal) nonresponse pdf of iy  is defined as: 

 ( ) ( ){ } ( )
( ){ }iip

iipiiip
iir E

yfyE
yf

x
xx

x
|1

|,|1
|

ψ
ψ
−

−
=                                          (2)  

(d) For vector of random variables ( )iiy x, , the following relationships hold: 

( ) ( ){ } 1|| −= iipiir yEyE ψφ                                                   (3a) 

                                                       ( ) ( ){ } ( )iiririp yEEyE φφ 1−=                                                 (3b)                                                

( ) ( ){ }
( ){ }
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−

−
=

φ
φ
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ψ

                              (3c)       

According to equation (1), for a given population distribution, the response distribution is completely 
determined by the specification of the conditional expectations of response probabilities, 

( )iiip yE x,|ψ . So in order to obtain the response pdf of iy , we need to model these population 
conditional expectations.  In this paper we consider only the following model for this population 
conditional expectation: 

( ) ( ) ( )( )iiiiiiip hyaasiyriyE xxx 110exp.,|Pr,| ++=∈∈=ψ                   (4)                                                                

for some function ( )x1h , where  { }1,0, =ja j  are unknown parameters to be estimated from the 
respondent set.                      
 
3. Unified Probability Weighted Estimators under Nonignorable Nonresponse  
In this section, we derive known results in probability sampling theory from the relationships given in 
Section 2. Also we prove that probability weighted estimator, in case of nonresponse, is just the 
method of moments estimator based the response and nonresponse distributions. So we have a new 
justification of the use of probability weighted estimators.  
Let Nyy ,...,1  be N  independent and identically distributed random variable from a population with 

finite mean ( ) µ=ip yE  and finite variance ( ) 2σ=ip yVar . The method of moments estimates of  

µ  and 2σ  are the solutions of the method of moments equations: ( ) ∑∈
−===

Ui iUip yNYyE 1µ  

and ( ) ∑∈
−=+=

Ui iip yNyE 21222 µσ which are: UY=µ~  and 2212~
UUi i YyN −= ∑ ∈

−σ . But 

∑∈Ui iy  and ∑∈Ui iy 2  are unknown finite population parameters that need estimation. Now using 

(3b), we can show that the method of moments estimators of  UY  and ( )∑
∈

− −=
Ui

iU YyNS 212  under 

nonignorable nonresponse are: 

φφ
φ
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which are the well known probability weighted estimator. 
If the nonresponse mechanism is ignorable: in this case, ( ) ( )irip yEyE = , so that the method of 

moments estimators of  ∑∈
−=

Ui iU yNY 1  is given by  ∑∑ ∈∈
=

riri iUR yY 1ˆ . 
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4.  Response Likelihood and Estimation 
Having derived the response distribution, and if the response measurements are independent, then the 
logarithm of the response likelihood for  θ  and η  is: 

  ( ) ( ) ( ) ( ) ( )ηθψηψθηθγθ ,,|log,,|log,,|log,
111

iip

m

i
iiip

m

i
igniir

m

i
r EyElyfl xxx ∑∑∑

===

−+==  (5)           

where ( ) ( )( )∑∈
=

ri iipign yfl θθ ,|log x  is the classical log-likelihood obtained under ignorable 
nonresponse. 
Based on the response data { }riy iii ∈  ;,, φx  we can estimate the parameters of the population model 
in two steps: 
Step-one: Estimate the nonignorable nonresponse parameters η  using the following relationship in 
(3a).   
Thus the nonignorable nonresponse parameters can be estimated using regression analysis. Denoting 
the resulting estimate of η  by η~ .  
Step-two: Substitute η~  in (5), and then maximize the resulting response log-likelihood function with 
respect to the population parameters, θ : 

( ) ( ) ( ) ( )ηθψηψθηθ ~,,|log~,,|log~,
11

iip

m

i
iiip

m

i
ignr EyEll xx ∑∑

==

−+=                (6) 

where ( )ηθ ~,rl  is the response log-likelihood after substituting η~  in the response log-likelihood 
function, (5). 
 
5. Prediction of Finite Population Total under Nonignorable Nonresponse 
Sverchkov and Pfeffermann (2004) use sample and sample complement distributions for the 
prediction of finite population totals under informative sampling for single-stage sampling designs. 
Later Eideh and Nathan (2009) extend the theory to general linear functions of the population values 
and to two-stage informative cluster sampling. In this section we use the response and nonresponse 
distributions to predict the finite population total under noninformative sampling design and under 
nonignorable nonresponse. We consider the prediction for single-stage sampling and under simple 
ratio population model (R). 
Assume single-stage population model. Let 

∑∑∑∑∑∑ ∈∈∈∈∈∈
++=+==

si iri iri isi isi iUi i yyyyyyT                       (7)                                                          
be the finite population total that we want to predict using the data from the response set  and possibly 
values of auxiliary variables that may include some or all of the design variables.  Notice that T  can 
be decomposed into three components: the first component represents the total for observed units in 
the sample – response set, ∑∈ri iy , the second component represents the total for unobserved units in 

sample – nonresponse set, ∑∈ri iy  , and the third component represents the total for non-sample 

units, ∑∈si iy . 
For the prediction process we have the following available information: 
(a). The information that comes from the sampling design  denoted by: 

( ){ } { }[ ]siUiIxO iiis ∈∈= ,,,, π , where siIsiI ii ∉=∈= for   0  and  for    1 . 

(b). Information that comes from the response set denoted by: ( ){ }[ ]siriyO iir ∈∈= ,,ψ , N , n , 
and m . 
Thus the available information, from the sample and response set, for the prediction process is 

rs OOO = . 

Let ( )OTT ˆˆ =  define the predictor of T  based on O . We can show that the mean square error (MSE) 

of T̂  given O : ( ) ( ){ } ( ){ } ( )OTVarOTETOTTETMSE pppp ||ˆ|ˆˆ 22
+−=−=

 

is minimized when 
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( ) ( ) ( )∑∑∑ ∈∈∈
++==

si ipri irri i OyEOyEyOTET |ˆ . We know the values { }risyi ∈,' , so the 

sum ∑∈ri iy  is known. Thus to estimate for our response set, we need to predict the total for 

unobserved units in the sample – nonresponse set, ∑∈ri iy , and the total for non-sample units, 

∑∈si iy . That is, to predict T  we need to predict values for the { }risyi ∈,'  and values for 

the{ }sisyi ∈,' . According to (3b and 3c), we can show that: 

( )[ ]
( )
( )

( ) ( ){ }∑

∑

∈

∈

−
−=

−
−=

ri irir

iir
ign

ri ip

iip
ignnign

EE
yCov

T

E
OyCov

TT

1
,ˆ        

1
,ˆ ˆ

φφ
φ

ψ
ψ

                                              (8) 

where  
( ) ( )∑∑∑ ∈∈∈

++=
si ipri ipri iign OyEOyEyT̂  

is the best linear unbiased  predictor (BLUP) of ∑∈
=

Ui iyT  under ignorable nonresponse.  

We can show that the nonresponse bias of nignT̂  is given by: 

( ) ( ) ( )
( )∑

∈ −
−=−=

ri ip

iip
nignpnign E

yCov
TTETB

ψ
ψ

1
,ˆˆ                                             (9) 

Hence, the predictor nignT̂  is unbiased if there is no correlation between the study variable and the 

response probabilities iψ . The stronger the relationship between the study variable and the response 
probability, the larger the bias. Similar result was obtained by Bethlehem (1988). 
As an illustration, we apply the results under simple ratio population model (R) stating that: 

( )iipii xxNxy 2,~ σβ are independent normal random variable. If ( ) ( )iiip yyE ηψ exp| = , then we can 

show that, ( )( ) rixxNxy iirii ∈+ ,,~| 22 σβησ . Thus, 

( )
( )

( )
∑
∈


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
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
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x
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xTT

2
exp1

2
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2
,, ση

βη

ση
βη

ησ                              (10) 

where 

∑∑∑
∈∈∈

++=
si

i
ri

i
ri

iignR xxyT ββ,
ˆ  

Under the response distribution: ( )( ) rixxNxy iirii ∈+ ,,~| 22 σβησ , we can show that the 

maximum likelihood  estimators of the parameters of  simple ratio population model are given by:  

∑
∈


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and 

∑
∈


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where η~  is the least square estimator obtained via the relationship in (3a).  
Now, if the missing value mechanism is ignorable, that is, 0=η , then 
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Therefore,  

XN
x
yT

r

r
ignR =,

ˆ                                                                    (13) 

which is the classical ratio estimator under nonignorable nonresponse and under noninformative 
sampling design.  
Finally, the bias of nignRT ,

ˆ  is given by: 
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6. Conclusions 
In this paper we consider a new method of estimating the parameters of the superpopulation model for 
single-stage sampling from a finite population when the sampling design is noninformative and the 
response mechanism is nonignorable. We provide new justification for the broad use of probability-
weighted estimators in estimating finite population parameters in case of ignorable nonresponse. 
Furthermore we fit the simple ratio population model under noninformative sampling design and 
under nonignorable nonresponse. In addition to the estimation problem we introduce new predictors 
of the finite population total for the simple ratio population model. These new predictors take into 
account the nonignorable nonresponse. Thus, also provides new justification for the broad use of best 
linear unbiased predictors (model-based school) in predicting finite population parameters in case of 
ignorable nonresponse.  The main features of the present predictors and estimators are their 
behaviours in terms of the nonignorable nonresponse parameters. Also the use of the best linear 
unbiased predictors and estimators that ignore the nonignorable nonresponse yield biased predictors 
and bias estimators. I hope that the new mathematical results obtained will encourage further 
theoretical, empirical and practical research in these directions. 
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RÉSUMÉ 
Dans cet article, nous étudions l’utilisation de la distribution de réponse et de non réponse pour la prédiction 
d’un total en population finie, lorsque que le plan d’échantillonnage n’est pas informatif et que les valeurs 
manquantes sont non ignorable. Le prédicateur proposé utilise les valeurs des répondants pour les variables 
d’intérêt, et les pondérations des répondants. Les problèmes d’estimation est traité en estimant les espérances 
des valeurs de la variables d’intérêt pour les unités non observées dans l’échantillon. Nous illustrons les résultats 
obtenus en dérivant un nouveau prédicateur pour le total d’une population finie en termes de paramètres non 
ignorable de non réponse. Nous utilisons aussi le meilleur prédicateur non biaisé. Les estimateurs qui ignorent la 
non réponse non ignorable produisent les prédicateurs et estimateurs biaisés. 
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