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1 Introduction

In robust statistical inference the departure of data from an assumed model is usually expressed by

some suitably chosen neighborhood of the model distribution. The various types of neighborhoods

have been used to describe the departure to date (see Huber and Ronchetti, 2009). Among them,

the neighborhoods defined in terms of ε - contamination and total variation distance have been most

frequently adopted in the literatures. As a combination of such two neighborhoods, Rieder (1977)

introduced a neighborhood generated from a special capacity, which we call Rieder’s neighborhood, and

used it in his works on robust inference. Ando and Kimura (2003) proposed the (c, γ) - neighborhood

which is a generalization of Rieder’s neighborhood and gave its applications to robust inference.

We are concerned with the problem of constructing robust confidence intervals and tests for the

median of an unknown model distribution F ◦ when the data may be contaminated. This problem

was treated under ε - contamination neighborhood by Yohai and Zamar (2004), and then under the

(c, γ) - neighborhood by Ando, Kakiuchi and Kimura (2009). The purpose of this paper is to introduce

a new neighborhood generated from a special capacity determined by three parameters, which we

call the (c1, c2, γ) - neighborhood, and to study the problem under this neighborhood. The (c1, c2, γ) -

neighborhood includes not only the (c, γ) - neighborhood but also various new neighborhoods by chang-

ing the values of the three parameters. In Section 2 we define the (c1, c2, γ) - neighborhood and present a

list of various neighborhoods obtained as special cases. In Section 3 we give a characterization theorem

of the (c1, c2, γ) - neighborhood. This shows that (c1, c2, γ) - neighborhood is natural and intuitively

understandable. In Section 4 we derive robust nonparametric confidence intervals and investigate their

robustness and efficiency under the (c1, c2, γ) - neighborhood. In Section 5 we state the result about

a robustification of sign test for the median of F ◦ under the (c1, c2, γ) - neighborhood. Our results

refine those of Yohai and Zamar (2004) and Ando, Kakiuchi and Kimura (2009), and include theirs

as special cases.

2 The (c1, c2,γ) - neighborhood

Let R be the real line, B the Borel σ - algebra of subsets of R and M the set of all probability measures

on (R,B). For some specified F ◦ ∈ M we propose the following neighborhood of F ◦ defined as

Pc1,c2,γ(F
◦) = {G ∈ M | G{A} ≤ min (c2F

◦{A}+ γ, c1F
◦{A}+ 1− c1),

∀A ∈ B}.
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where

(2.1) 0 ≤ c1 ≤ 1− γ ≤ c2 < ∞, c1 ̸= c2 and 0 ≤ γ < 1.

This neighborhood, which we call (c1, c2, γ) - neighborhood, includes (c, γ) - neighborhood introduced

by Ando and Kimura (2003), and hence as special cases it includes Rieder’s (1977) neighborhood as

well as the neighborhoods defined in terms of ε - contamination and total variation distance (see Huber

and Ronchetti, 2009). We can obtain various other neighborhoods by changing c1, c2 and γ. As easily

seen, Pc1,c2,γ(F
◦) is also generated from the following special capacity: Let

h(t) = min (c2t+ γ, c1t+ 1− c1), 0 ≤ t ≤ 1,

where c1, c2 and γ satisfy the condition (2.1), and let

vh{A} =

{
h(F ◦{A}), if ϕ ̸= ∀A ∈ B,

0, if A = ϕ.

Then, by Lemma 3.1 of Bednarski (1981) vh is a special capacity, which satisfies all the conditions of

Choquet’s 2 - alternating capacity except condition (4) in Huber and Strassen (1973), and we have

Pc1,c2,γ(F
◦) = {G ∈ M | G{A} ≤ vh{A} for ∀A ∈ B}.

Thus the (c1, c2, γ) - neighborhood is generated from the special capacity vh. This fact means that it

has nice properties for developing minimax theory in robust inference. When c1 = c2 = 1 and γ = 0,

we have h(t) = t and vh = F ◦. This implies that a probability measure is a special capacity and

Pc1,c2,γ(F
◦) = F ◦. As special cases we can obtain the following representative neighborhoods:

(i) ε - contamination neighborhood: Pc1,1−ε,ε(F
◦) = P1−ε,c2,ε(F

◦).

(ii) Total variation neighborhood: P0,1,δ(F
◦).

(iii) Rieder’s neighborhood: P0,1−ε,ε+δ(F
◦).

(iv) (c, γ) - neighborhood: P0,c,γ(F
◦).

(v) εt - neighborhood: P1−ε,1,δ(F
◦).

(vi) g - neighborhood: Pc1,c2,0(F
◦).

Both of εt - neighborhood (v) and g - neighborhood (vi) are new, and have a special interest for us.

3 Characterization of (c1, c2,γ) - neighborhood

Let F ◦ be an absolutely continuous distribution function on R and let f◦ be a density function of F ◦

(with respect to the Lebesgue measure). Also, let Mc(⊂ M ) be the set of all absolutely continuous

distributions on (R,B). Then we obtain the following characterization theorem which shows that

Pc1,c2,γ(F
◦) can be expressed in the intuitively more understandable form by using density functions.

Theorem 3.1 For 0 ≤ c1 ≤ 1− γ ≤ c2 < ∞, c1 ̸= c2 and 0 ≤ γ < 1, it holds that

Pc1,c2,γ(F
◦) = {G = (1− γ)F + γK ∈ M | F ∈ Fc1,c2,γ(F

◦), K ∈ M },

where

Fc1,c2,γ(F
◦) = {F ∈ Mc |

c1
1− γ

f◦ ≤ f ≤ c2
1− γ

f◦}

and f is a density function of F .
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Let F ◦
L and F ◦

R be the distributions in Fc1,c2,γ(F
◦) defined by

(3.1) F ◦
L(x) =


c2

1− γ
F ◦(x), if x ≤ xL,

c1
1− γ

F ◦(x) +

(
1− c1

1− γ

)
, if x > xL,

and

(3.2) F ◦
R(x) =


c1

1− γ
F ◦(x), if x ≤ xR,

c2
1− γ

F ◦(x) +

(
1− c2

1− γ

)
, if x > xR,

where

xL = (F ◦)−1

(
1− γ − c1
c2 − c1

)
and xR = (F ◦)−1

(
c2 + γ − 1

c2 − c1

)
,

respectively. Then, F ◦
L(x) and F ◦

R(x) are stochastically smallest and largest distribution functions in

Fc1,c2,γ(F
◦), respectively, and we have (1− γ)F ◦

R(x) ≤ G(x) ≤ (1− γ)F ◦
L(x)+ γ for all x ∈ R and any

G ∈ Pc1,c2,γ(F
◦).

4 Robust nonparametric confidence intervals

Let Xn = (X1, · · · , Xn) be an independent and identically distributed random sample with a common

distribution G ∈ Pc1,c2,γ(F
◦), where F ◦ is unknown, and let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the order

statistics of Xn.

The purpose of this section is to construct robust nonparametric confidence intervals for the

median of the unknown target distribution F ◦ under Pc1,c2,γ(F
◦), but not for the median of the data

distribution G. We assume the following two conditions:

(C1) F ◦ is absolutely continuous with a unique median θ = (F ◦)−1(1/2).

(C2) 0 ≤ γ < 1/2, c2 < 2(1− γ).

The second condition of (C2) guarantees that 0 < F (θ) < 1 holds for all F ∈ Fc,γ(F
◦), that is, the

median θ lies inside the support of F. We consider the sign test statistic

(4.1) Tn,θ(Xn) =
n∑

i=1

I(0,∞)(Xi − θ),

where I(0,∞) denotes the indicator function on (0,∞). Then the associated confidence interval for θ

is given by

(4.2) In = [X(kn+1), X(n−kn)),

which is obtained by inverting the acceptance region of the sign test kn < Tn,θ(Xn) < n− kn, where

kn is the integer determined by given n, α (0 < α < 1) and λ (0 ≤ λ < 1) as follows:

(4.3) kn = kn(n, α, λ) = argmin
k

|α∗(n, k, λ)− α|,

where α∗ = α∗(n, k, λ) = 1−P (k < Zn < n− k) with Zn distributed as Binomial (n, (1− λ)/2) . Here

we note that λ is the sum of contamination size γ and gap size min {(1−γ)− c1, c2− (1−γ)}, that is,

(4.4) λ = min {(1− γ)− c1, c2 − (1− γ)}+ γ.
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Since 0 ≤ γ ≤ λ < 1 from (2.1), it follows that λ = 0 implies that γ = 0 and c1 = 1− γ or c2 = 1− γ,

and hence Pc1,c2,γ(F
◦) = F ◦. We also note that limn→∞ α∗(n, kn, λ) = α, that is, the exact (i.e., real)

coverage probability 1 − α∗ of the confidence interval (4.2) asymptotically converges to the nominal

coverage probability 1− α.

The following theorem enables us to construct robust nonparametric confidence intervals over

(c1, c2, γ) - neighborhoods and gives the result corresponding to Theorem 1 in Yohai and Zamar (2004)

and Theorem 1 in Ando, Kakiuchi and Kimura (2009).

Theorem 4.1 Let Xn = (X1, · · · , Xn) be a random sample from G ∈ Pc1,c2,γ(F
◦). Then the

following results hold:

(i) In = [X(kn+1), X(n−kn)) has nonparametric (c1, c2, γ) - robust coverage 1− α∗(n, kn, λ), that is,

(4.5) inf
G∈Pc1,c2,γ(F

◦)
PG{X(kn+1) ≤ θ < X(n−kn)} = 1− α∗(n, kn, λ),

where kn and λ are given by (4.3) and (4.4), respectively.

(ii) The infimum in (4.5) is achieved for any γ - contaminating distribution of F ◦
L (or F ◦

R) which

places all its mass to the left (or the right) of θ, where F ◦
L and F ◦

R are the stochastically smallest

and largest distributions in Fc1,c2,γ(F
◦) given by (3.1) and (3.2), respectively.

Theorem 4.1 states that the nonparametric (c1, c2, γ) - robust confidence interval In with coverage

probability 1−α∗(n, kn, λ) is determined through λ = min {(1−γ)− c1, c2− (1−γ)}+γ. We present

a list of λ for the representative neighborhoods given in Section 2.

(i) ε - contamination neighborhood: λ = ε, 0 ≤ ε < 1/2.

(ii) Total variation neighborhood: λ = 2δ, 0 ≤ δ < 1/2.

(iii) Rieder’s neighborhood: λ = ε+ 2δ, 0 ≤ ε, 0 ≤ δ, ε+ δ < 1/2.

(iv) (c, γ) - neighborhood: λ = c+ 2γ − 1, 0 ≤ γ < 1/2, 1− γ ≤ c < 2(1− γ).

(v) εt - neighborhood: λ = min(ε, 2δ), δ < ε < 1, 0 < δ < 1/2.

(vi) g - neighborhood: λ = min {1− c1, c2 − 1}.

When λ = ε or λ = c + 2γ − 1, the confidence intervals In with coverage probability 1 − α∗(n, kn, λ)

are the same as the nonparametric ε - robust confidence interval in Yohai and Zamar (2004) or the

nonparametric (c, γ) - robust confidence interval in Ando, Kakiuchi and Kimura (2009), respectively.

This fact implies that the last two confidence intervals have also nonparametric (c1, c2, γ) - robust

coverage 1 − α∗(n, kn, λ) for all c1, c2 and γ such that λ = ε or λ = c + 2γ − 1, respectively. When

c1 = 1 − ε, c2 ≥ 1 + ε or c1 ≤ 1 − ε, c2 = 1 + ε, we have λ = ε (0 ≤ ε < 1) for g - neighborhood.

It should be noted that although ε - contamination neighborhood and g - neighborhood seem to be

heterogeneous, both sizes λ are the same.

For some given n, α and (c1, c2, γ), we construct the confidence interval In = [X(kn+1), X(n−kn))

with λ which has (c1, c2, γ) - robust coverage 1 − α∗. The 1 − α and 1 − α∗ are an nominal coverage

probability and the exact coverage probability for In, respectively. We call (c1, c2, γ) the design size. In

what follows, we investigate the robustness and efficiency of In under the real size (c̃1, c̃2, γ̃) satisfying

all the conditions (2.1) and (C2) for (c1, c2, γ) replaced by (c̃1, c̃2, γ̃). Thus we have to distinguish

(c1, c2, γ) and (c̃1, c̃2, γ̃) clearly.

The maximum asymptotic length L{In, F ◦, (c̃1, c̃2, γ̃)} of {In} under the real size (c̃1, c̃2, γ̃) at

F ◦ is defined by

L{In, F ◦, (c̃1, c̃2, γ̃)} = sup
G∈Pc̃1,c̃2,γ̃

(F ◦)
essup lim sup

n→∞
(X(n−kn) −X(kn+1)),
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where essup stands for essential supremum. The length breakdown size λ∗{In, F ◦, (c̃1, c̃2, γ̃)} of the

sequence {In} under the real size (c̃1, c̃2, γ̃) at F
◦ is defined as

λ∗{In, F ◦, (c̃1, c̃2, γ̃)} = sup{λ | L{In, F ◦, (c̃1, c̃2, γ̃)} < ∞}.

Theorem 4.2 Suppose that F ◦ has a symmetric (around θ) and unimodal density. Let 0 < α < 1

and (c, γ) be fixed and consider the sequence {In} of confidence intervals In = [X(kn+1), X(n−kn)) with

kn and λ given by (4.3) and (4.4), respectively. Then, for 0 ≤ λ < 1− 2γ̃ the following results hold:

(i) If 0 ≤ λ < 1− 2γ̃ − 2c̃2(1− γ̃ − c̃1)

c̃2 − c̃1
and c̃1 ̸= 0, then

L{In, F ◦, (c̃1, c̃2, γ̃)} = (F ◦)−1

(
1− 1− λ

2c̃1

)
− (F ◦)−1

(
1− 1 + λ

2c̃1

)
, 0 ≤ γ̃ <

1

2
,

if 1− 2γ̃ − 2c̃2(1− γ̃ − c̃1)

c̃2 − c̃1
≤ λ <

c̃1(c̃2 − 1 + γ̃)

c̃2 − c̃1
and c̃1 ̸= 0, then

L{In, F ◦, (c̃1, c̃2, γ̃)}

=


(F ◦)−1

(
λ

c̃1
+

1− 2γ̃ − λ

2c̃2

)
− (F ◦)−1

(
1− 2γ̃ − λ

2c̃2

)
, 0 ≤ γ̃ <

c̃2(1− c̃1)

2c̃2 − c̃1
,

(F ◦)−1

(
1− 1− λ

2c̃2

)
− (F ◦)−1

(
1− 2γ̃ − λ

2c̃2

)
,

c̃2(1− c̃1)

2c̃2 − c̃1
≤ γ̃ <

1

2
,

and if
c̃1(c̃2 − 1 + γ̃)

c̃2 − c̃1
≤ λ < 1− 2γ̃, then

L{In, F ◦, (c̃1, c̃2, γ̃)} = (F ◦)−1

(
1− 1− λ

2c̃2

)
− (F ◦)−1

(
1− 2γ̃ − λ

2c̃2

)
, 0 ≤ γ̃ <

1

2
.

(ii) λ∗{In, F ◦, (c̃1, c̃2, γ̃)} = 1− 2γ̃.

(iii) If γ̃ = γ, then the sequence {In} has the finite maximum asymptotic length under the real size

(c̃1, c̃2, γ̃) at F
◦ if and only if

min {(1− γ)− c1, c2 − (1− γ)}+ 3γ < 1.

(iv) Let {I ′n} be a sequence of confidence intervals I ′n = [An(Xn), Bn(Xn)) such that

inf
G∈Pc1,c2,γ(G

◦)
PG{An(Xn) ≤ (G◦)−1 (1/2) < Bn(Xn)} = 1− α

for any absolutely continuous distribution G◦. Suppose that limn→∞ An(Xn) = A0 and limn→∞
Bn(Xn) = B0 almost surely when the sample comes from F ◦. Then it holds that

A0 ≤ (F ◦)−1 ((1− λ)/2) and B0 ≥ (F ◦)−1 ((1 + λ)/2) .

5 Robust nonparametric tests

Let F ◦ be a fixed unknown distribution and consider the problem of testing H0 : θ = θ0 versus

H1 : θ ̸= θ0. Let φn,θ0(Xn) be a non-randmized sign test defined by

(5.1) φn,θ0(Xn) =

 1, if Tn,θ0(Xn) ≤ kn or Tn,θ0(Xn) ≥ n− kn,

0, if kn < Tn,θ0(Xn) < n− kn,

where Tn,θ(Xn) is given by (4.1), and kn and λ are given by (4.3) and (4.4), respectively.
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Theorem 5.1 A non-randmized sign test φn,θ0(Xn) given by (5.1) has nonparametric (c1, c2, γ) -

robust level α∗(n, kn,λ), that is,

sup
G∈Pc1,c2,γ(F

◦)
PG{φn,θ0(Xn) = 1} = α∗(n, kn, λ) for all F ◦.

A sequence (φn,θ0), n ≥ n0, of non-randmized tests is said to have (c̃1, c̃2, γ̃) - robust power at F
◦

if there exists a positive real number M such that

(5.2) inf
G∈Pc̃1,c̃2,γ̃

(F ◦
η )

lim
n→∞

PG{φn,θ0(Xn) = 1} = 1 for all |η| > M,

where F ◦
η (x) = F ◦(x−η). The (c̃1, c̃2, γ̃) - consistency distance M∗{(φn,θ0), F

◦, (c̃1, c̃2, γ̃)} of a sequence

(φn,θ0), n ≥ n0, of tests at F
◦ is defined as the infimum of the set of values M for which (5.2) holds.

The power breakdown size λ∗{(φn,θ0), F
◦, (c̃1, c̃2, γ̃)} of a sequence (φn,θ0), n ≥ n0, of tests at F ◦ is

defined as the supremum of the set of values λ for which the sequence of tests is (c̃1, c̃2, γ̃) - robust

power at F ◦.

Theorem 5.2 Suppose that F ◦ has a symmetric (around θ) and unimodal density. Let 0 < α < 1

and consider the sequence of tests (φn,θ0), n ≥ n0, for H0 : θ = θ0 versus H1 : θ ̸= θ0 given by (5.1).

Then, for 0 ≤ λ < 1− 2γ̃ the following results hold:

(i) The (c̃1, c̃2, γ̃) - consistency distance for the sequence (φn,θ0), n ≥ n0, of tests at F ◦ is

M∗{(φn,θ0), F
◦, (c̃1, c̃2, γ̃)}

=


(F ◦)−1

(
1 + λ

2c̃1

)
, 0 ≤ λ < 1− 2γ̃ − 2c̃2(1− γ̃ − c̃1)

c̃2 − c̃1
,

(F ◦)−1

(
1− 1− 2γ̃ − λ

2c̃2

)
, 1− 2γ̃ − 2c̃2(1− γ̃ − c̃1)

c̃2 − c̃1
≤ λ < 1− 2γ̃.

(ii) λ∗{(φn,θ0), F
◦, (c̃1, c̃2, γ̃)} = 1− 2γ̃.

(iii) If γ̃ = γ, then the sequence (φn,θ0), n ≥ n0, of tests has (c̃1, c̃2, γ̃) - robust power at F ◦ if and

only if

min {(1− γ)− c1, c2 − (1− γ)}+ 3γ < 1.
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