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Change point is the problem of identifying sudden change at a particular time point in the
pattern of the data collected over time. Change point problem has many diverse applications not
only in statistics but also in other disciplines such as hydrology, climatology etc. where change
point problem occurs regularly. There are various aspects to the change point problem, namely
detection of change point, estimation of the time at which the change occurred and finally, modeling
the data before and after change. A substantial literature exists on models that combine detection,
estimation and modeling using a statistical framework. In this paper, we discuss a Bayesian procedure
to detect change points in the presence of missing or irregular data points. Modeling change points
may become complicated in the presence of missing data. We discuss here a detection method using
second generation wavelet transforms.

In statistics literature, Discrete wavelet transform (DWT) is used to detect change points. DWT,
however, can not be used to detect change points in the presence of missing data. We thus introduce
second generation wavelet transform technique or lifting technique to detect change points. The use
of lifting technique to detect change points is a new and timely procedure.

We introduce an algorithm based on lifting transform to detect change points. Our method
is easy to implement and can be applied to any data size. Bayesian procedure is used to find the
posterior distribution of the change point and the position of the change point can be determined by
the mode of the skewed posterior distribution.

The objective of this paper is to compare the existing DWT method with the method of lifting
transform to show the relative importance of these two methodologies in the context of real data
problems.

Overview of Change Point Methods

A change point is the time at which some features of the distribution of a variable changes; the
most common features usually considered are changes in the mean structure in the form of shifts in
trends, or changes in the variance structure. Detection of change points is a complicated problem in
practice as neither the occurrence nor the possible multiplicity of change points is known.

The change point problem was originally addressed in Bayesian statistics by Smith (1975),
followed by Carter and Blight (1981). Bayesian methods were applied considering single or multiple
changes in conjunction with a known or an unknown number of change points. Gelfand et al. (1990)
considered a known number of change points and discussed Bayesian analysis of a variety of normal
data models, including regression and ANOVA, which allowed some unequal variances. Stephens
(1994) carried out a Bayesian analysis of a multiple change point problem where the number of
change points was assumed to be known, but the times of occurrence of the change points remained
unknown. Examples of such approaches using a known number of change points include Carlin et
al.(1992), Tanner (1993) and Rasmussen (2001).
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Overview of Wavelets

Wavelets are special functions consisting of dilation and translation indices. Larger values of
dilation indices correspond to higher frequency components, and larger values of translation indices
correspond to rightward shifts. In practice we use a discrete wavelet transform (DWT) to map a
data vector y = (y1,.....,uyn), for n = 27, to a vector of wavelet coefficients w = (w1, .....,w,) via an
orthogonal matrix W. Choice of wavelet functions determines W. Since higher frequency components
occur for larger values of dilation, detection of change points involves examination of these higher
frequency coefficients in w.

Computation of the discrete wavelet transform is carried out using the popular Mallat’s pyramid
algorithm which consists of low-pass and high-pass filters through which, at each stage, the input
values of the function are decimated. When the data are of size n = 2/ the DWT requires J levels
of decomposition. Denoting n; = n/ 27, the output of a DWT is a set of ‘detail’ coefficients d; =
(dj1,dj2, ..y djn;) at levels j = 1,2,...,J along with ‘smooth’ coefficients s; = (51,572, -, SJn,),
corresponding to the high-pass and low-pass filters, respectively. The detail wavelets coefficients
contain the high-frequency content and are used in the change point detection procedure.

A classical approach towards detecting a change point is to choose a level j and examine the
corresponding detail coefficients, d;. Specifically, one can choose a threshold value based on the
sample size and an estimated sample variance, compare the coefficients in d; to this threshold value
and decide whether any coefficients are ‘large’ enough to indicate the existence of a change point.
Such a procedure is similar to wavelet-based outlier detection procedures available in Wang (1995)
and Bilen and Huzurbazar (2002).

All the applications discussed above suggest a very essential first step, that is, to transform the
data into empirical wavelet coefficients through the discrete wavelet transform (DWT). DWT has its
own limitations. Such a transformation is only possible under the following conditions:

(a) the time points should be equally spaced, and
(b) total number of observations n should be a power of 2.

Various methods have been proposed for adjusting irregularly spaced data. To address the shortcom-
ings of DWT, the most popular of these methods is considered as lifting technique. We describe below
the method of lifting in detail.

Adaptive Lifting

Lifting transform is relatively new in statistics literature and there are no applications of lifting
in change point detection. The algorithm was first introduced by Sweldens (1996) which facilitated for
a wavelet construction of non-standard data, including irregular data on a grid. Jansen et al. (2004)
introduced a new lifting algorithm which was modified by Nunes et al. (2006). An imputation method
based on lifting was later introduced by Heaton and Silverman (2008). Lifting essentially consists of
three steps: splitting the data, predicting the removed data and updating the remaining data. In this
section we describe the different lifting algorithms.

As a first step, the data is subsampled into two disjoint subsets: points representing the even
positions in the grid, and points representing the odd positions in the grid (Swelden 1996). Jansen
(2004) and Jansen et al. (2001) proposed generating just one wavelet coefficient at each step. Nunes
et al. (2006) used a flexible lifting scheme that suggests removing one coefficient at a time in order to
build up adaptive prediction steps and embedding them into the lifting algorithm.

The second step is to predict the function values corresponding to the odd positions by us-
ing polynomial regression of the corresponding function values to the even positions. The error in
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prediction (the difference between the true and predicted functional values of odd positions) is then
quantified in a vector referred to as the set of wavelet (or detail) coefficients.

In the final step, the function values of the even positions are updated by using linear combina-
tions of the current function values of the even positions and the vector of detail coefficients obtained
at the previous step.

The split-predict-update steps can be re-iterated on the updated data set, and the initial data
set is replaced by the remaining updated subsample (which reproduces the coarse scale features of
the initial signal). The detail coefficients are accumulated throughout this process. This is similar to
the DWT method, discussed above, which replaces the initial signal by a set of scaling and wavelet
coefficients. The procedure is easily inverted by undoing the update stage, the prediction stage and
then merging the subsamples.

Jansen (2004) and Jansen et al. (2001) introduced the concept of lifting just one coefficient in
each step. The split step of the lifting algorithm suggests choosing a point which can be removed.
The odd/even split, however, poses some problems in higher dimensions. Jansen (2004) and Jansen
et al. (2001) proposed removing the points in an order guided by the configuration, namely, that the
points belonging to denser areas be removed first. Again, each location is supposed to be associated
with an interval values: the shorter the interval, higher the densely sampled area around the location.
Once a point has been selected for removal, identify its set of neighbors. The next step is to predict
scaling coefficients by using regression over the neighboring locations. The prediction error will be the
detail coefficient corresponding to that location. In the update step, only the function-values of the
neighboring points are updated by using a linear combination with the detail coefficients, At this stage,
the lengths of the intervals associated with the neighboring points are also getting updated, accounting
for the decreasing number of scaling points within the range of same interval. The procedure is then
repeated on the updated data set, and with each repetition a new wavelet coefficient is added. Hence
after say (n — L) removals, we have L scaling coefficients and (n — L) wavelet coefficients.

Nunes et al. (2006) proposed a modification to the LOCAAT (Lifting One Coefficient At a
Time) lifting scheme which is called “Adaptive Lifting”. This algorithm is primarily based on lifting
one coefficient at a time without imposing any restriction on a choice of prediction or a choice of
neighborhood at the beginning of the procedure. The adaptive lifting scheme is called “adaptive”
because at each step a choice of prediction or a choice of neighborhood is made. Two types of
neighbor choices are used in adaptive lifting. We can choose symmetrical neighbors that is, same
number of neighbors on the left and right of the removed points or we can choose closest neighbors
to the removed points irrespective of which side they lie. This algorithm is computationally efficient
than the LOCAAT lifting schemes suggested by Jansen et al (2001).

We know that the DWT scale is a discrete dyadic quantity. In “one coefficient at a time” lifting,
this scale becomes more of a continuous type. In this adaptive lifting scheme the finest level contains
half of the wavelet coefficients, the next coarser level represents a quarter and so on.

A few modifications of the resulting coefficients are needed to apply adaptive lifting in Bayesian
change point detection procedure. In the framework of nonparametric regression, use of wavelets ¢;
follows independent normal distribution with constant variance. This may not be true in case of lifting.
In fact, in this case of lifting there will be a correlation between coefficients and different coefficients
will have different variances. To overcome this, we normalize the resulting coefficients by multiplying
[diag(WWT)]_1/2 for each step where W is the the matrix associated with the transform.

Lifting Transformation in Bayesian framework

In this section, we derive the marginal posterior distribution of change point using lifting-
based wavelet coefficients. It is clear from our above discussion that the lifting coefficients are not
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independently distributed with constant variance as we expect in case of wavelet coefficients derived
from DWT. If we assume initial independence of data then the resulting lifting coefficients remain to
be independent but do not have homogeneous variances. To make the variance constant, we have to
normalize coefficients at each step by multiplying a transformation matrix. Even if the initial data has
a covariance structure, normalizing lifting coefficients at each step by multiplying a transformation
matrix will marginally affect the detection of change points.

In the general change point problem, as mentioned by Ogden and Lynch (1998), Y1, .....,Y,, are
the ordered observed data such that Y; ~ N(f(i/n),c?) for some function f defined on [0,1]. Hence,
f has the form

1, if0<u<m,

Jw) = {u+A, ifr<u<l.
for some change point 7 € [0,1]. Our objective is to estimate the parameters 7, u, A and 2. Estimation
of change-point 7 is important here. Later we will choose suitable priors for u, A and o?2.

We have already defined lifting transformation. In the lifting-based procedure after (n — L)
removals, we have L scaling coefficients and (n — L) wavelet coefficients. These lifting coefficients
are independent but with a non constant variance. To overcome this, we normalize the resulting
coefficients by multiplying [diag(WWT)]il/ ? for each step where W is the matrix associated with the
transform. After normalization we denote these transformed empirical lifting coefficients as w. Since
the empirical lifting coefficients are independent with constant variance o2, the joint distribution can
be written as:

p(w|7', A7U2) = H] Hk:p(w]vk ’T) Aa 02)

where w represents the vector of coefficients. As before, the posterior distribution of the parameter is
p(T, A,Uz\w) x Hj [T p(wj,k |, A,Uz) cm(T, A, 02)

for a joint prior distribution 7 on 7,/ and ¢2. The distribution of a single lifting-based wavelet
coefficient was taken to be
’U)j,k ’T,A,U2 ~ N(qu',k (7’),02/71).

Ogden and Lynch (1998) defined the mean function g¢;,, (7) as

G (1) = 92/ {2—% j[m'], if 2:% <7 <27(k+ 1_/2),
—n27(k+1)—[n7]), f277(k+1/2)<7<277(k+1).
for 7 € [0,1]. The gj, function is continuous and piecewise linear, shaped like an inverted hat; it is
zero outside the support of the corresponding wavelet and goes to a peak at the midpoint in support
of ¥j,,. To get the values of g;,; for all j and k we can apply lifting scheme to the vector of 0 and 1
([nT] — 1 zeros and n — [n7] + 1 ones).
Hence, the posterior density will be

(1) p(r, A, 0%w) oc o~ VR (7 AL 0) X eap(— DD (wyn — A gy (1)) (20%))
ik

The analytical result may vary according to the choice of the prior distribution 7 on 7, /A and

Each empirical wavelet coefficient contains information regarding the changes of a function in
a localized region. For this reason, we use more localized or higher level coefficients to compute the
posterior density. The posterior density is thus computed using only the wavelet coefficients with
dilation index j > jo. Ogden and Lynch (1998) used Jeffreys’ non-informative joint prior for 7, A and
o such that
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(1,0, 0%) x 1/0.
Thus the joint posterior density is given by

p(1, A\, 0% |w) ox o~ (D2
exp(— 25> Se(wjon — A gy (1)) /(20%))

Integrating out A and o, the marginal posterior of change point 7 will be

(2) p(r|w) o« C~Y2(A — B2/C)~(n9)/4

where A = 37~ > wj,2, B = Do 2ok Wisk Gk (T), and C = 37, 37 q]z,k (7). Mode of above
posterior probability distribution of 7 will give us the change point.

Simulation Results

Statistical simulation studies provide powerful tools for the analysis of many mathematical
models and real data problems when analytical solution is not possible. To recommend a suitable
choice of lifting-based coefficients, it is essential to explore different cases of variable sample size,
variable noise variances, variable jump sizes and variable time series structures. The results of the
study will provide us a guideline to choose lifting-based coefficients.

As mentioned earlier, there is no specific rule of selecting a specific number of coefficients for
detection of change points. Due to lifting scheme of resolution L, we have L smooth and (n— L) detail
coefficients. These (n — L) detail coefficients are assigned with artificial levels into fine and coarse
levels. To detect change points we use only the fine level detail coefficients.

We decided on 1500 simulations. The principle was that for a fixed set of lifting coefficients, the
percentage of detection should stay constant even if we increase the number of simulations. Hence, we
run 1500 simulations for different choices of sample sizes, resolution levels and different sets of lifting
coefficients.

(a) Comparison between DWT and Lifting:

For 1500 simulations we first compare DWT-based coefficients and lifting-based coefficients. In
this case our sample size is n = 27 and the resolution level is two. There are no missing observations.
We consider d7, d6 and d5 wavelet coefficients to calculate posterior probabilities. We divide our grid
into equally spaced 128 points. We will choose five highest posterior probabilities matching with any
five points on the grid. We consider it as a successful detection if the change point is detected among
those five grid points. If the grid point corresponding to the highest posterior probability matches
the change point then we will disregard the next four highest posterior probabilities. If the grid point
matches the second highest posterior probability but not the first one then we will also count it as a
successful detection and disregard next three highest posterior probabilities and so on. For n = 27,
d7, d6 and db are the finest level coefficients of DWT which should have information about jumps.
For lifting-based scheme we have four artificially assigned levels of detail coefficients. Out of these 126
detail coefficients, we choose all coefficients of two finest levels and 22 of 31 coefficients from the third
finest level. These sets of lifting coefficients correspond to our choice of coefficients in DWT. It has a
combination of detail coefficients at fine levels and coarse levels. This combination should be able to
detect both small and large jumps. We simulate data from normal distribution with error terms for
three different choices of variances. As the variance term increases, noise in the data also increases and
detection of change points is expected to be difficult for the reason that it will be harder to judge as to
whether jump is due to high level of noise or due to the presence of an actual change. We considered
two different jump sizes for simulation. We can expect that with the big jump size, change point
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detection becomes relatively easier. In the following table we report the percentages of detections
for different combinations of error variances and jump sizes. Increase in error variance implies that
our simulated data are getting more noisy. Two different jump sizes are taken into account which
in comparison to the noise variance of our generated data are small (i.e. jump size 1) and large (i.e.
jump size 3) respectively.

Table 1: Comparison between DWT and lifting, n = 27, no missing observations

Variance
0.5 1 1.5
Size of jump | DWT T Lifting | DWT | Lifting | DWT [ Lifting
1 541 % | 93.7% | 36.3% | 89.8% | 28.9% | 87.4%
3 98.0% | 93.7% | 91.9% | 91.1% | 84.9% | 90.7%

Table 1 shows that, as expected, coefficients based on lifting procedure perform consistently better
than DWT coeflicients under the presence of different noise variances. In fact, when the noise variance
is high and jump size is small (i.e. when the detection is difficult), DWT coefficients can detect change
points only for 28.9% cases whereas the detection is possible for 97.4% cases by lifting. Hence it may
be recommended that the lifting-based procedure coefficients should be chosen for detecting change
points.

We may now turn to provide a real data example to substantiate our observations based on simulation
results.

St. Lawrence Streamflow Data

Our case study, for purposes of comparison, uses annual streamflow data from the St. Lawrence
River at Ogdensbourg, New York from the years 1860 to 1950. These data were first analyzed by
Rasmussen (2001) and recently by Seidou et al.(2007), both using the framework of Bayesian linear
models. A description of the data is given in Rasmussen (2001). Here we note that both the methods
i.e. DWT and Lifting found the mode of the posterior distribution for the time of the change point to
be 1891. The original data had 90 observations, so we augmented it to n=128 or 27. We get the same
year 1891 as the change point. Figure 1 is the plot with the original data and posterior distribution.
Now, from the plot we find that the posterior density picks up at both the ends. Our procedure clearly
detects a change point at 1891 if we consider years between 1860 and 1950.

Using lifting-based coefficients, we find the mode of the posterior distribution for the time of the
change point to be 1891 (Figure 2). Since the original data had 90 observations, we do not need to
augment it to 27 to apply wavelet transform. Lifting transform can perform with any number of data
points. Using 45% of fine detail coefficients we get our change point as 1891. Plot of the posterior
pdf (Figure 1)shows multiple modes. Among them lifting-based coefficients detect the correct change
point. It is not unusual to have a posterior pdf with multiple modes using lifting-based coefficients.
There are two possible reasons for the multiple modes in the plot. Our procedure is useful for finding
single change point in the data set but if there exists multiple change points, we can not be able to find
them. Secondly, lifting based coefficients are based on polynomial regression which does not take into
account the time dependence of the data which may contribute to the calculation of lifting coefficients
and hence to the posterior pdf.
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St.Lawrence streamflow and posterior pdf of change point
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Figure 1:Plot of the St. Lawrence streamflow data (top), with change point at year 1891,
augmented data (middle) and posterior pdf (bottom) with the augmented data on both
sides
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St.Lawrence streamflow and posterior pdf of change point
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Figure 2:Plot of the St. Lawrence streamflow data (top) with change point at year 1891
and posterior pdf (bottom)
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