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Introduction

In reliability study, it is important to analyze the time period over which items or systems

function. Such analyses are called lifetime or failure time analyses. However, for highly reliable

items, their lifetimes are usually longer under normal operating conditions. Therefore, it becomes

time-consuming for observing enough failure time data or the cost of the experiment is increased.

The standard method to assess highly reliable components is to test them under extreme operating

conditions, referred to as accelerated life test (ALT). In such experiment, testing units are subjected

to higher than usual levels of stress, such as temperature, voltage, force, humidity, and so on, so that

more failures can be observed. The main purpose of the ALT is to observe more complete lifetime data

under extreme conditions in order to draw statistical inference under normal conditions. ALT can be

carried out using constant stress test, step-stress, or linearly increasing stress. Moreover, since there

are constraints on completing a life test, some censoring procedure is commonly adopted. The most

commonly used censoring schemes applied to time-step and failure-step stress tests are the Type-I

censoring and Type-II censoring, respectively. Type I censoring occurs if an experiment begins with a

set number of subjects or items and stops at a predetermined time. Instead, if we determine the life

test or change stress level when the number of failed components reaches the pre-fixed number, this

censoring scheme is called Type-II censoring. In the former case, the terminating time of the life test

is fixed and the number of failure items is random; in the latter, however, the terminating time of the

test is random but the number of failure observations is fixed.

The problem of ALT and making inference from Type-I and Type-II censored data has been

studied by many authors. Nelson(1980) originally proposed the simple step stress ALT, in which only

one change of stress occurs with a cumulative exposure model for Type-I and Type-II censored data.

Miller and Nelson (1983) considered the optimal simple step-stress plans where all test components

were run to failure with exponentially distributed failure time. Most authors have dealt with maximum

likelihood (ML) inference and optimal test plans based on the ALT. See Meeker and Escobar (1998),

Bagdonavicius and Nikulin (2002), Escobar and Meeker (2006), and the references therein. Other

than the ML approach, van Dorp et al. (1996) van Dorp and Mazzuchi (2004) conducted Bayesian

inference of ALTs.

Most of the papers dealing ALT tests in the literature have assumed the life time distribution

of the testing item to be exponential distribution, Weibull distribution or log-normal distribution,

etc. However, under more complex structure or mechanism, the above distributions may not fit the

lifetime data well. On the other hand, a more general distribution which also covers all the above
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distributions is the generalized gamma distribution. The generalized gamma distribution was first

considered by Stacy (1962). Although it covers many commonly used distributions, the exists some

difficulty in calculating the maximum likelihood estimates of the underlying parameters. Lawless

(1980, 1982) made a log-transformation with re-parametrization on the parameters which simplifies

the calculation of the MLE and related inference. We adopt Lawless’ (1982) version of the generalized

gamma distribution in this paper. We will discuss n independent and identical items whose lifetime

distribution is the generalized gamma distribution under K different stress levels ALT. The test is

run within a fixed time interval under Type-I censoring for all stress levels. We assume that the

relationship between the stress level and the location parameter of the lifetime distribution is linear.

The rest of the paper is organized by the following. Section 2 introduces the notations and model

assumptions. Section 3 presents the maximum likelihood inference of the underlying parameters along

with the predictive issues on the mean time to failure (MTTF) and the reliability under conditions of

normal use; while Section 4 applies the likelihood ratio test to identify if the ALT data are suitable

to be fitted by the usual exponential distribution; or alternatively, the generalized gamma is a more

appropriate model. An illustrative example based on simulation data are provided in Section 5.

Finally, concluding remarks are made in Section 6.

Assumptions and Model Description

We first describe a step-stress ALT with Type-I censored data involving K stress environments

x = (x, . . . , xK). It is presumed that the ordering of the testing environments in terms of severity

induces the same ordering in the associated failure rates. Suppose N identical test items are available

for the step-stress ALT over experimental time τ > 0 and their lifetimes are denoted by T1, . . . , TN .

The experiment is then carried out in the following manner. Letting 0 = N0 < N1 < · · · < NK−1 <

NK = N be fixed, and each stress level xk is applied to Nk−1 + 1, . . . , Nk items, for k = 1, . . . ,K. All

the items are removed upon the experimental time τ . Let δi be the indicator variable to indicate if

item i fails under the test, for i = 1, . . . , N . If item i fails by τ , so that Ti < τ , then δi = 1; otherwise,

we have Ti = τ and δi = 0, if the ith item is still active at τ . At the end of the test, the data are

collected as d = {(ti, δi), i = 1, . . . , N} in which ti < τ and δi = 1; or ti = τ and δi = 0.

Under the aforementioned step-stress ALT scheme, the following three assumptions are made:

(A1) The stress level is gradually increased in k. That is

0 < x0 < x1 < x2 < · · · < xK < ∞.

(A2) Under any stress level k, the failure times Ti of the items i = Nk−1 + 1, . . . , Nk are indepen-

dent and identically distributed from a generalized gamma lifetime distribution, denoted by

GG(βk , λ, σ), for k = 1, 2, · · · ,K, with the probability density function (pdf)

(1) fk(t) =
λ

σtΓ(λ−2)
[λ−2(e−βkt)

λ
σ ]λ

−2

exp[−λ−2(e−βkt)
λ
σ ], t > 0, βk > 0, λ > 0, σ > 0,

and the survival function

(2) Fk(t) = 1− Γ[λ−2(e−βk t)
λ
σ , λ−2], t > 0, βk > 0, λ > 0, σ > 0,

where Γ(t; γ) =
∫ t

0 x
γ−1e−x dx/Γ(γ).

(A3) The linear relationship holds between the stress variable xk and the location parameter βk i.e.

βk = a+ b xk,
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for k = 1, · · · ,K, where a, b are unknown parameters depending on the nature of the product.

From (A1), the lifetime of each component is decreasing as the stress level is gradually increasing,

thus b < 0.

Throughout the paper, define
∑0

j=1(·) = 0 and
∏0

j=1(·) = 1.

Maximum Likelihood Estimation

In this section, we derive the maximum likelihood estimates (MLEs) of the parameters underlying

the ALT model described in Section 2. Given stress environments x = (x1, . . . , xK), and the time

duration τ , combining the pdf of the lifetime and its survival function specified by (1) and (2), we

obtain the joint likelihood function of the parameter vector θ = (a, b, λ, σ) given the data d as

L(θ|d) =

K
∏

k=1

Nk
∏

i=Nk−1+1

fk(ti)
δi × [Fk(τ)]

Nk−nk

=
K
∏

k=1

Nk
∏

i=Nk−1+1

{

λ

σtiΓ(λ−2)
[λ−2(e−βkti)

λ
σ ]λ

−2

exp[−λ−2(e−βk ti)
λ
σ ]

}δi

×

K
∏

k=1

(

1− Γ[λ−2(e−βkτ)
λ
σ ;λ−2]

)Nk−nk

,(3)

where βk = a+ bxk and nk =
∑Nk

i=Nk−1+1, and its log-likelihood function is

ℓ(θ|d) =

K
∑

k=1

Nk
∑

i=Nk−1+1

{

δi log
{ λ

σtiΓ(λ−2)
[λ−2(e−βk ti)

λ
σ ]λ

−2

exp[−λ−2(e−βkti)
λ
σ ]
}

}

+

K
∑

k=1

(Nk − nk) log
{

1− Γ[λ−2(e−βkτ)
λ
σ ;λ−2]

}

.(4)

We apply the function ’optim()’ in R software, provided by Cox et al. (2007) to find the maximum

of θ in (4), and the result θ̂ = (â, b̂, λ̂, σ̂) = argmax
a,b,λ,σ

ℓ(a, b, λ, σ|d) is the MLE of θ. Under regularity

conditions, as N → ∞, θ̂′ is asymptotically normally distributed with mean vector θ
′ and variance-

covariance matrix I−1(a, b, λ, σ) where I(a, b, λ, σ) is the Fisher information matrix of θ. However,

since the I(a, b, λ, σ) is too complex to derive from (4), here we use the parametric bootstrap method

(Efron (1979)) to approximate the standard errors of the MLEs, and the algorithm is given as follows.

Step (1). For k = 1, . . . ,K; and i = Nk−1 + 1, . . . , Nk, simulate T ⋆
i from GG(β̂k, λ̂, σ̂), respectively. Let

δ⋆i = 1 if 0 < T ⋆
i < τ ; otherwise, T ⋆

i = τ and δ⋆i = 0.

Step (2). Find the MLE of (a, b, λ, σ) based on d
⋆ = {(t⋆i , δ

⋆
i ), i = 1, . . . , N}, say (â⋆, b̂⋆, λ̂⋆, σ̂⋆) =

argmax
(a,b,λ,σ)

ℓ((a, b, λ, σ)|d⋆).

Step (3). Repeat Step 1 and Step 2 B times to get (â⋆(i), b̂⋆(i), λ̂⋆(i), σ̂⋆(i)), for i = 1, 2, · · · , B, which form

a bootstrap sample and the resulting sample standard deviations can be used to approximate

the standard error of the corresponding MLE.

It is important to realize that the purpose of the step-stress ALT is not merely to estimate the

unknown parameters of the model. Quite often, interest may also lie in studying the effect of the stress

environments on the lifetime distribution and on the prediction of the mean time to failure (MTTF),

and the reliability function of an item under the use or normal operating conditions. Let x0 be the
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stress level of the use or normal environment. Then, all the above mentioned quantities of interest are

indeed functions of θ. For example, the MTTF under normal condition is given by

(5) E(T0) = exp(a+ b x0 +
2σ

λ
lnλ)

Γ(
1

λ2
+ σ

λ
)

Γ(
1

λ2
)

and the associated reliability function is

(6) R(t) = P (T0 > t) = 1− Γ[λ−2(e−a−b x0t)
λ
σ ;λ−2].

By the invariance property of MLE, we can replace θ by θ̂ into Eqs.(5) and (6) to obtain the MLEs

of the corresponding quantities of interest. Furthermore, we can apply the above bootstrap sam-

ple to approximate the standard errors of the estimates to draw further statistical inference of the

corresponding parameters or quantities of interest.

1 The likelihood ratio test

Note that the exponential distribution is a special case of the generalized gamma distribution. In

Eq.(1), when λ = σ = 1, it is indeed the pdf of an exponential distribution with mean eβ. Therefore,

under the framework defined in Sections 2 and 3, if the lifetime data Ti are obtained from the expo-

nential distribution with means eβk under stress level xk, for k = 1, . . . ,K, and i = Nk−1 + 1, . . . , Nk,

then given the data d, the likelihood function of (a, b) is reduced to

(7) L(θ|d) =
K
∏

k=1

Nk
∏

i=Nk−1+1

{

1

eβk
e−e−βk ti

}δi

×
{

e−e−βkτ
}Nk−nk

,

where again βk = a+ bxk for k = 1, . . . ,K, so that the log-likelihood is

ℓ(θ|d) =
K
∑

k=1

Nk
∑

i=Nk−1+1

δi

[

−a− bxk − e−(a+bxk)ti

]

− (Nk − nk)e
−(a+bxk)τ.

All the rest is similar to that derived in Section 3 with λ = σ = 1.

Exponential distribution is the most commonly used to model the lifetime distribution due to

its simplicity and the memoryless property. However, in the more complex structure or mechanism,

the lifetime data may not be well fitted by the exponential distribution. On the other hand, the

generalized gamma distribution with three parameters is more flexible to fit complicated data. More-

over, exponential distribution is a special case of the generalized gamma distribution. It may be more

appropriate to confirm the lifetime distribution through a formal statistical hypothesis testing before

making further inference on the MTTF and/or reliability.

Considering the null hypothesis H0 : λ = σ = 1 versus the alternative Ha : λ 6= 1 or σ 6= 1, we

are interested in whether the data are from the exponential distribution or otherwise, it’s from the

generalized gamma distribution. We consider the likelihood ratio test with

λ(d) =
supθ∈Θ0

L(θ|d)

supθ∈Θ L(θ|d)
=

L(â0, b̂0, 1, 1|d)

L(â, b̂, λ̂, σ̂|d)
,

where (â, b̂, λ̂, σ̂) is the MLE based on (3) when the data are from the generalized gamma distribution;

and (â0, b̂0) is the MLE under the exponential distribution (7). As N → ∞,

−2 lnλ(d)
d

−→ χ2
m,
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under H0, i.e. the likelihood ratio statistic −2 ln λ(d) converges in distribution to a χ2 distribution

with degrees of freedom m = dim(Θ)− dim(Θ0) = 2.

Example

To illustrate how one can utilize the methodologies developed in the preceding sections, we

now present an artificial example. In this example, we consider a step-stress ALT of two tress levels

x1 = 10 and x2 = 15, each applied to 150 items over τ = 650 when the lifetime of each item is

simulated form the generalized gamma distribution. The stress level x0 = 5 is assumed to be the

normal operating environment for this purpose. Specifically, the first 150 data are simulated from

GG(6.1 − 0.06x1, 1.3, 1.5) and the last 150 from GG(6.1 − 0.06x2, 1.3, 1.5), respectively and the data

are censored at 650. The histograms of the simulated data are presented in Figure 1. By Eqs.(5) and

(6), we know that the MTTF under the normal operating environment is 368 and the reliability at

the mean lifetime is R(368) = 0.305.

We first test the hypothesis for H0 : λ = σ = 1 versus H1 : λ 6= 1 or σ 6= 1 based on the simulated

data. Based on the likelihood ratio test given in Section 4, the resulting observed statistic is 130.016

which yields the p-value ¡0.001. In other words, the data provides strong evidence to conclude that the

generalized gamma distribution indeed is the more appropriate model and the corresponding MLE’s

(â, b̂, λ̂, σ̂) = (6.22,−0.06, 1.27, 1.54) which are quite accurate compared to the true parameter values.

Consequently the estimate of the MTTF under normal condition is 435 with estimated standard error

159.27 based on 200 bootstrap replications, and the estimated reliability at the estimated MTTF is

0.300. On the other hand, if the data are fitted by the exponential model, it results in the estimated

MTTF and the reliability estimation are 348 and 0.367 under the normal operating environment,

respectively. Apparently, fitting the data with the simpler model tends to underestimate the MTTF

and overestimate the reliability which may cause big loss for the producer for long term service.

Figure or Table Title

Data under stress level x1. Data under stress level x2.
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Figure 1: The histograms of the simulated data along with its true pdf (solid line), fitted pdfs by

GG(dashed line) and Exp (dotted line).
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RÉSUMÉ (ABSTRACT) — optional

We will discuss the reliability analysis of constant stress accelerated life tests under generalized

gamma lifetime distributions. Statistical inference on the estimation of the underlying model parame-

ters as well as the mean life time and the reliability function will be addressed based on the maximum

likelihood approach. Large sample theory will be derived for the goodness of fit of the data. Some sim-

ulation study and an illustrative example will be presented to show the appropriateness of the proposed

method.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS040) p.4833


