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Introduction

Considering the uniform distance d∞ on the space C of two-dimensional copulas yields a compact

metric space (C, d∞) in which the family of shuffles of the minimum copula M are dense (see [5], [10],

[11]). If A ∈ C is a shuffle of M , µA denotes the corresponding doubly stochastic measure and X,Y

are random variables on a probability space (Ω,A,P) with PX⊗Y = µA, then X and Y are mutually

completely dependent (see [11]) and knowing X implies knowing Y and vice versa. Consequently

the product copula Π (describing complete unpredictability) can be approximated arbitrary well by

mutually completely predictable copulas with respect to d∞. In other words, d∞ does not ’distinguish

between different types of statistical dependence’ (see [10]) and dependence measures which are con-

tinuous w.r.t. d∞ like Schweizer and Wolff’s σ (see [11] and [14]) seem somehow unnatural.

Using the one-to-one correspondence between copulas and Markov operators on L1([0, 1],B([0, 1]), λ)
allows to consider the topology OM on C which is induced by the strong operator topology on the

space M of Markov operators (see [3], [10], [12]). Since the topology that the weak operator topology

on M induces on C coincides with the topology induced by d∞ (see [12]) it is straightforward to see

that OM is finer than Od∞ . Rewriting the Markov operators in terms of regular conditional distribu-

tions (Markov kernels) a L1-type metric D1 on C based on the conditional distribution functions was

defined in [15] and shown to have (amongst others) the following properties:

(P1) D1(A,B) ≤ 1/2 for all A,B ∈ C
(P2) D1 is a metrization of OM

(P3) The metric space (C, D1) is complete and separable

(P4) D1(A,Π) ≤ 1/3 for all A ∈ C with equality if and only if A is a deterministic1 copula

Hence, according to point (P4), in contrast to d∞, all ’deterministic’ copulas have maximum D1-

distance to Π and Π can not be approximated by such copulas w.r.t. D1. The dependence measure

τ1 : C → [0, 1] induced by D1 is therefore naturally defined by τ1(A) := 3D1(A,Π).

In the current paper we will take a look to the L2-versions of D1 and τ1 and show that the new metric

D2 and the new dependence measure τ2 also exhibit various good properties (similar to the ones of

D1 and τ1 respectively). Before doing so we will collect some notation and preliminaries in the next

section.

Notation and preliminaries

Throughout the paper C will denote the family of all two-dimensional copulas. For every copula

A ∈ C the corresponding doubly stochastic measure will be denoted by µA, the family of all these µA

1a copula supported only on the graph of a Lebesgue-measure-preserving transformation S on [0, 1], see Definition 1
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by PC . M will denote the minimum copula, Π the product copula and W the lower Fréchet-Hoeffding

bound. For properties of copulas see [6] and [11]. d∞ will denote the uniform metric on C, i.e.

d∞(A,B) := max
(x,y)∈[0,1]2

|A(x, y)−B(x, y)|.

For every d ≥ 1 B(Rd) denotes the Borel σ-field in Rd, B([0, 1]d) the Borel σ-field in [0, 1]d, and λd

the d-dimensional Lebesgue measure. In case d = 1 we will also simply write B([0, 1]) and λ. If X,Y

are real-valued random variables on a probability space (Ω,A,P) then we will write PX⊗Y for their

joint distribution and PX ,PY for the distributions of X and Y . E(Y |X) will denote the conditional

expectation of Y given X. Since by definition E(Y |X) is Aσ(X)-measurable there exists a measurable

function g : R → R such that E(Y |X) = g◦X holds P-almost surely; we will write E(Y |X = x) = g(x)

and call g a version of the conditional expectation of Y given X. A Markov kernel from R to B(R) is
a mapping K : R× B(R) → [0, 1] such that x 7→ K(x,B) is measurable for every fixed B ∈ B(R) and
B 7→ K(x,B) is a probability measure for every fixed x ∈ R. A Markov kernel K : R× B(R) → [0, 1]

is called regular conditional distribution of Y given X if for every B ∈ B(R)

K(X(ω), B) = E(1B ◦ Y |X)(ω)(1)

holds P-a.s. It is well known that for each pair (X,Y ) of real-valued random variables a regular

conditional distribution K(·, ·) of Y given X exists, that K(·, ·) is unique PX -a.s. (i.e. unique for

PX -almost all x ∈ R) and that K(·, ·) only depends on PX⊗Y . Hence, given A ∈ C we will denote (a

version of) the regular conditional distribution of Y given X by KA(·, ·) and refer to KA(·, ·) simply

as regular conditional distribution of A. Note that for every A ∈ C, its conditional regular distribution
KA(·, ·), and Borel sets E,F ∈ B([0, 1]) we have∫

F
KA(x,E) dλ(x) = µA(F × E),(2)

so in particular∫
[0,1]

KA(x,E) dλ(x) = λ(E).(3)

For more details and properties of conditional expectation and regular conditional distributions see

[8], [9], [1], [2].

A linear operator T on L1([0, 1],B([0, 1]), λ) is called Markov operator (see [3],[10], [12]) if it fulfils the

following three properties:

1. T is positive, i.e. T (f) ≥ 0 whenever f ≥ 0

2. T (1[0,1]) = 1[0,1]
3.

∫
[0,1](Tf)(x)dλ(x) =

∫
[0,1] f(x)dλ(x)

The class of all Markov operators on L1([0, 1],B([0, 1]), λ) will be denoted by M. It is straightforward

to see that the operator norm of T is one, i.e. ∥T∥ := sup{∥Tf∥1 : ∥f∥1 ≤ 1} = 1 holds. According to

[3] and [12] there is a one-to-one correspondence between C and M - in fact, the mappings Φ : C → M
and Ψ : M → C, defined by

Φ(A)(f)(x) : = (TAf)(x) :=
d

dx

∫
[0,1]

A,2(x, t)f(t)dλ(t),

(4)
Ψ(T )(x, y) : = AT (x, y) :=

∫
[0,x]

(T1[0,y])(t)dλ(t)

for every f ∈ L1([0, 1]) and (x, y) ∈ [0, 1]2 (A,2 denoting the partial derivative w.r.t. y), fulfil Ψ ◦Φ =

idC and Φ ◦Ψ = idM. Note that in case of f := 1[0,y] we have (TA1[0,y])(x) = A,2(x, y) λ-a.s. (the a.s.
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existence of the partial derivative follows from the fact that for every fixed y the mapping x 7→ A(x, y)

is absolutely continuous since copulas are Lipschitz continuous, see [11], [13], [7]). According to [10]

TAf is a version of the conditional expectation of f ◦ Y given X, i.e.

(TAf)(x) = E(f ◦ Y |X = x)(5)

holds λ-a.s. The metric D1 mentioned in the Introduction and its induced dependence measure

τ : C → [0, 1] are defined by

D1(A,B) :=

∫
[0,1]

∫
[0,1]

|KA(x, [0, y])−KB(x, [0, y])|dλ(x) dλ(y)(6)

τ1(A) := 3D1(A,Π).(7)

The metric D2 and its induced dependence measure τ2

Throughout the rest of this paper we will consider the L2-version D2 of D1, which is defined as

follows:

D2
2(A,B) :=

∫
[0,1]

∫
[0,1]

(KA(x, [0, y])−KB(x, [0, y]))
2dλ(x) dλ(y)(8)

It is straightforward to show thatD2 is a metric on C. Hölder’s inequality impliesD1(A,B) ≤ D2(A,B)

for all A,B ∈ C, so the topology D2 induced by D2 on C is at least as fine as the one induced by D1.

Furthermore obviously D2
2(A,B) ≤ D1(A,B) holds, so altogether we have

D1(A,B) ≤ D2(A,B) ≤
√

D1(A,B),(9)

which shows that D1 and D2 induce the same topology on C. As a consequence, using the facts about

D1 mentioned in the Introduction, D2 is a metrization of the topology OM too.

To simplify notation we will write

ΨA,B(y) :=

∫
[0,1]

(KA(x, [0, y])−KB(x, [0, y]))
2dλ(x)(10)

for all A,B ∈ C. The following first result holds:

Lemma 1 For every pair A,B ∈ C the function ΨA,B, defined according to (10), is Lipschitz conti-

nuous with Lipschitz constant 4 and fulfils ΨA,B(y) ≤ min{2y, 2(1− y)} for every y ∈ [0, 1]. Moreover

there exist copulas A,B ∈ C for which equality ΨA,B(y) = min{2y, 2(1− y)} holds for all y ∈ [0, 1].

Proof: Suppose that E ∈ B([0, 1]), then using (3) and applying Scheffé’s theorem (see [4]) we get∫
[0,1]

(KA(x,E)−KB(x,E))2dλ(x) ≤
∫
[0,1]

|KA(x,E)−KB(x,E)|dλ(x)

= 2

∫
G
KA(x,E)−KB(x,E) dλ(x)

≤ 2

∫
[0,1]

KA(x,E) dλ(x) = 2λ(E)

whereby G = {x ∈ [0, 1] : KA(x,E) > KB(x,E)}. Since KA(·, Ec) = 1 −KA(·, E) holds, considering

E = [0, y] implies the desired inequality. Straightforward calculations show that in case of the copulas

M and W we get ΨM,W (y) = min{2y, 2(1− y)} for every y ∈ [0, 1].
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Finally, to see Lipschitz continuity, suppose that s > t, then

|ΨA,B(s)−ΨA,B(t)| ≤
∣∣∣∣ ∫

[0,1]
(KA(x, (0, s])−KB(x, (0, s]))

2 dλ(x)−∫
[0,1]

(KA(x, (0, t])−KB(x, (0, t]))
2 dλ(x)

∣∣∣∣
≤ 2

∫
[0,1]

|KA(x, (t, s])−KB(x, (t, s])| dλ(x) ≤ 4(s− t). �

Definition 1 A copula A ∈ C is called deterministic (or completely dependent) if there exists a

λ-preserving transformation S : [0, 1] → [0, 1] such that K(x,E) := 1E(Sx) = δSx(E) is a regular

conditional distribution of A. The class of all deterministic copulas will be denoted by Cd.

Remark 1 It is easy to see that Definition 1 is equivalent to the condition that µA has support only

on the graph of S.

As mentioned before D1 and D2 induce the same topology - nevertheless the following lemma holds:

Lemma 2 D1 and D2 are not equivalent metrics.

Proof: We will start by calculating D1(A1, A2) and D2(A1, A2) for A1, A2 ∈ Cd. Suppose that S1, S2

are the corresponding λ-preserving transformations, then

D2
2(A1, A2) =

∫
[0,1]

∫
[0,1]

(1[0,y](S1x)− 1[0,y](S2x))
2dλ(x)dλ(y)

=

∫
[0,1]

∫
[0,1]

|1[0,y](S1x)− 1[0,y](S2x)|dλ(x)dλ(y) = D1(A1, A2)

= ∥S1 − S2∥1,

which, in particular, implies that the second inequality in (9) can not be improved. For every n ∈ N
define an interval-exchange transformation (see [5]) Sn : [0, 1] → [0, 1] as follows (see Figure 1):

Sn(x) =


x+ (1− 1

2n ) if x ∈ (0 , 1
2n ]

x− (1− 1
2n ) if x ∈ (1− 1

2n , 1]

x otherwise

Furthermore let S denote the identity on [0, 1] and M,A1, A2 . . . the corresponding deterministic

copulas in Cd. Then we get

D2
2(An,M) = D1(An,M) = ∥Sn − S∥1 = 2

∫
[0, 1

2n
]

(
1− 1

2n

)
dλ(x) =

1

2n−1

(
1− 1

2n

)
.

This shows that the quotient D2(An,M)
D1(An,M) is unbounded in n, so D1 and D2 can not be equivalent metrics.

�
Next we will show the D2-versions of (P2) and (P4) in the Introduction.

Theorem 1 The metric D2 only assumes values in [0,
√
1/2]. Furthermore, given A ∈ C, we have

D2
2(A,Π) ≤ 1/6 with equality if and only if A ∈ Cd.

Proof: The proof is easier than the proof of the corresponding result for D1 (see [15]) since we are

working in L2 instead of L1. The fact that D2
2(A,B) ≤ 1/2 is a direct consequence of Lemma 1. To

prove the second part of the theorem we may proceed as follows: Fix A ∈ C, y ∈ [0, 1] and define a

random variable Zy : ([0, 1],B([0, 1], λ) → [0, 1] by

Zy(x) := KA(x, [0, y]).
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Figure 1: Interval exchange transformations Sn used in the proof of Lemma 2

Then

E(Zy) =

∫
[0,1]

KA(x, [0, y])dλ(x) = µA([0, 1]× [0, y]) = y

as well as

ΨA,Π(y) =

∫
[0,1]

(KA(x, [0, y])− y))2dλ(x) = V(Zy)

follows. Hence, since Zy is [0, 1]-valued, ΨA,Π(y) becomes maximal if and only if Zy ∼ Binomial(y, 1),

in which case ΨA,Π(y) = y(1− y) holds. As a consequence D2
2(A,B) ≤

∫
[0,1] y(1− y)dλ(y) = 1/6.

Assume now that D2
2(A,Π) = 1/6 for some A ∈ C. We want to show that A ∈ Cd holds. Due to

(Lipschitz-) continuity we have ΨA,Π(y) = y(1 − y) for all y ∈ [0, 1], so Zy(x) := KA(x, [0, y]) fulfils

Zy ∼ Binomial(y, 1). For every y ∈ [0, 1] setting Ey := {x : Zy(x) = 1} ∈ B([0, 1]) implies λ(Ey) = y

as well as Zy(x) = KA(x, [0, y]) = 1Ey(x) for λ-almost every x ∈ [0, 1]. Consequently we can find a

measurable setM ⊆ [0, 1] fulfilling λ(M) = 1 such that for every x ∈ M we haveKA(x, [0, y]) = 1Ey(x)

for every y ∈ [0, 1] ∩Q. Define a transformation S : [0, 1] → [0, 1] by

Sx := 1M (x) inf {y ∈ Q ∩ [0, 1] : KA(x, [0, y]) = 1}.

Using right-continuity of distribution functions it follows that on M we have KA(x, [0, y0]) = 1 if and

only if Sx ≤ y0, i.e. if 1[0,y0](Sx) = 1. This implies that S is measurable since

{x ∈ [0, 1] : Sx ≤ y0} = M c ∪ {x ∈ M : KA(x, [0, y0]) = 1} ∈ B([0, 1])

holds for every y0 ∈ [0, 1]. Furthermore

λS([0, y0]) = λ({x ∈ [0, 1] : KA(x, [0, y0]) = 1)} = λ(Ey0) = y0,

so S is also λ-preserving. Since on M KA(x, [0, y0]) = 1[0,y0](Sx) = δSx([0, y0]) holds we have

KA(x,E) = δSx(E) for every Borel set E which shows that (x,E) 7→ δSx(E) is a regular condi-

tional distribution of A. Finally, if A ∈ Cd is a deterministic copula with corresponding λ-preserving

transformation S then it follows that

D2
2(A,Π) =

∫
[0,1]

∫
[0,1]

(1[0,y](Sx)− y)2dλ(x) dλ(y) =

∫
[0,1]

∫
[0,1]

(1[0,y](x)− y)2dλ(x) dλ(y) = 1/6.

This completes the proof. �

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS064) p.5519



Remark 2 Another possibility to prove Theorem 1 would be to embed C in L2([0, 1]2,B([0, 1]2), λ2)

via the mapping ϵ : A 7→ (HA : (x, y) 7→ KA(x, [0, y])), show that ϵ(C) is a closed convex subset of

L2([0, 1]2,B([0, 1]2), λ2) and that the extreme points of ϵ(C) are exactly the deterministic copulas.

Using Theorem 1 we can finally define the dependence measure τ2 : C → [0, 1] by

τ2(A) :=
√
6D2(A,Π), A ∈ C.(11)

Remark 3 Looking at the definition of D2 the dependence measure τ2(A) can, up to a scalar, be inter-

preted as expected L2-distance between the conditional distribution function of A and the distribution

function of the uniform distribution U[0,1].

Reformulating Theorem 1 in terms of τ2 immediately yields

Proposition 1 Suppose that A ∈ C and let τ2 be defined according to (11). Then τ2(A) ∈ [0, 1].

Furthermore τ2(A) = 1 if and only if A ∈ Cd, i.e. it is exactly the class of deterministic copulas that

is assigned maximum dependence measure.

We have already discussed all D2-versions of the points (P1)-(P4) except (P3). Nevertheless, the proof

for the corresponding result for D1 can be modified easily to show that the metric space (C, D2) is

separable and complete too.
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