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Introduction

In survey sampling, a random sample is drawn from a finite population in order to perform
inference on descriptive characteristics of some variables of interest. Usually, nonresponse occurs and,
as a consequence, the variables of interest are not observed for the entire selected sample by causing
missing data. We distinguish between two types of missing data: unit nonresponse, when a selected
sample unit is not observed at all – reasons for this may be that the unit is not found at home, or
he/she is not in the condition of providing the information required because ill or not informed, or
simply because he/she refuses to collaborate – and item nonresponse, when an interviewed unit does
not respond to all of the questions in the questionnaire. Addressing the issue of nonresponse is very
important, since nonresponse is present in almost all surveys and, above all, can highly bias estimates
if the responding units are systematically different from the non responding ones.

Several techniques have been proposed in the literature to deal with nonresponse at the estimation
stage. Typically, unit and item nonresponse are treated separately: unit nonresponse adjustments use
methods based on response modeling or on calibration (see e.g. Cassel et al., 1983; Kim and Kim, 2007;
Särndal and Lundström, 2005), while item nonresponse is usually addressed via imputation (single or
multiple, see e.g. Rubin, 1987). Usually, unit nonresponse is treated in a two-phase framework, in
which the selected sample is the first phase sample, while the set of respondents is considered as
a second phase sample with unknown probabilities of inclusion. The latter are unknown individual
characteristics defined for all units in the population and measure the probability that a unit responds
given that it was included in the sample. When auxiliary information is available for all units in the
original sample, these probabilities can be estimated. A common approach is to use a logistic model
for the response indicator (see e.g. Kim and Kim, 2007).

Note that the response probability is a measure of the propensity of a unit to participate in the
survey and that, therefore, it can also be considered as a latent variable. The use of latent variable
models with covariates was proposed by Moustaki and Knott (2000) for weighting in the presence
of item non-response. In this paper, we take a different perspective and use latent variable models to
address non-ignorable unit nonresponse also when auxiliary information is not available. Non-ignorable
non-response is typical of surveys with sensitive questions (concerning drug abuse, sexual attitudes,
politics, income, etc). The proposed method develops weights for the respondents by first linking unit
non-response to item non-response via a continuous latent variable. This latent variable will be then
used as a covariate for response probability estimation. Following Moustaki and Knott (2000), ‘weight-
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ing through latent variable modelling is expected to perform well under non-ignorable nonresponse
where conditioning on observed covariates only is not enough.’ Moreover, in the absence of any co-
variate, we expect that an estimator based on the proposed weighting system will perform better in
reducing bias than the naive estimator computed without this adjustment. The paper is organized as
follows. After a short introduction to latent variable models, the proposed methodology is illustrated.
The properties of the proposed estimators are sketched and some results from a simulation study are
presented, together with some concluding remarks.

Latent trait models

Latent variable models are multivariate regression models that link continuous or categorical
responses to unobserved covariates. A latent trait model is a factor analysis model for categorical data
(see Bartholomew et al., 2002). We focus here on binary data and continuous latent variables. Let
xk = (xk1, . . . , xk`, . . . , xkm)′ be the vector of binary indicator variables observed for unit k = 1, . . . , n.
For example, in the psychometric literature, xk` = 1 if student k provides a correct answer to test item
` and xk` = 0 otherwise. Denote by qk` = Pr(xk` = 1|θk), where θk = (θk,1, . . . , θk,j , . . . , θk,J)′ is the
value taken on unit k for the vector of J < m latent variables. The latent trait model is defined as

ln
(

qk`

1− qk`

)
= β`0 +

J∑
j=1

β`jθk,j ,

where β`0, . . . , β`J are the model parameters, ` = 1, . . . ,m, and k = 1, . . . , n.

An important special case is obtained by taking J = 1, i.e. a unidimensional latent trait model

(1) ln
(

qk`

1− qk`

)
= β`0 + β`1θk,1.

For simplicity denote θk,1 by θk. Usually it is assumed that θk ∼ N(0, 1). Model (1) is also referred to
as a two parameter logistic Rasch model, and is essentially a logistic regression except that the θk’s
are not observed. In the psychometric example, the latent variable θk can be interpreted as the ability
of student k to solve the test. The probability of success qk` is assumed to be a monotonic increasing
function of the ability θ (monotonicity assumption). Under the assumption of local independence, i.e.
that responses to the m items are independent for each k given θk, the parameters β`0 and β`1 are
estimated for each item `: β`0 reflects the extremeness of item ` and is also a measure of easiness
(larger values are connected with larger values of a positive response at all points in the latent space);
β`1 is known as the ‘discrimination’ parameter, and is a measure of how much information the item `

provides about the latent variable θk. Different goodness-of-fit measures of Model (1) are available in the
literature to check whether the assumptions of unidimensionality, monotonicity and local independence
hold (see e.g. Bartholomew et al., 2002).

Latent trait modelling for response propensities

Let U be a finite population of size N , indexed from 1 to N. Let s denote the set of sample labels,
so that s ⊂ U. The sample s is drawn using a probabilistic sampling design p(s), which induces first
order inclusion probabilities πk. Each unit k has also associated a response probability pk. Denote by
r ⊂ s the set of respondents, and by r̄ = s\r the set of nonrespondents. The response mechanism is given
by the distribution q(r|s) such that for every s we have q(r|s) ≥ 0, for all r ∈ Rs and

∑
s∈Rs

q(r|s) =
1, where Rs = {r|r ⊂ s}. Under unit nonresponse, we define the response indicator Rk = 1 if k ∈ r

and 0 otherwise. Thus r = {k ∈ s|Rk = 1} and pk = P (k ∈ r|k ∈ s) = P (Rk = 1|k ∈ s). We assume
that units respond independently of each other and of s, and so q(r|s) =

∏
k∈r pk

∏
k∈r̄(1− pk).
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Let yj be a particular variable of interest (ykj is its value for unit k), and let the response
mechanism depend on it (non-ignorable nonresponse). For such a case, the response probability pk

should be modelled using a logistic regression as follows

(2) pk = P (Rk = 1|ykj) =
1

1 + exp(−(a0 + a1ykj))
, for k ∈ s, or as follows

(3) pk = P (Rk = 1|ykj , zk) =
1

1 + exp(−(a0 + a1ykj + z′kα))
, for k ∈ s,

where zk = (zk1, . . . , zkt)′ is a vector with the values taken by t ≥ 1 covariates on unit k, and a0, a1

and α are parameters. Since ykj is only observed on the respondents, Models (2) and (3) cannot be
estimated. Cassel et al. (1983) suggest using the values of zk that are known for both respondents and
nonrespondents and are related to the ykj ’s by a ‘hopefully strong regression’ in the following model

(4) pk =
1

1 + exp(−z′kα)
.

Then, maximum likelihood can be used to fit Model (4) using the data (Rk, zk) for k ∈ s. This leads to
an estimate α̂ of α and to the estimated response probabilities p̂k = 1/(1 + exp(−z′kα̂)). A two-phase
type estimator that uses weights 1/(πkp̂k) provides some protection against nonresponse bias if zk is a
powerful predictor of the response probability and/or of the variable of interest (Kim and Kim, 2007).

Now, let M be the total number of variables (or items) in the questionnaire. Suppose that item
nonresponse is also present for variable ` = 1, . . . ,m ≤ M in the survey. For each item ` another
response indicator is introduced: xk` is a binary variable that takes value 1 if unit k answers to item `

and 0 otherwise. Let xk = (xk1, . . . , xk`, . . . , xkm)′ denote now the vector of response indicators of unit k

to the m items. Let also yk` be the response value of unit k to item `, and let yk = (yk1, . . . yk`, . . . , ykm)′

be the vector of values taken by m survey variables y on unit k. Item nonresponse can, for example,
be due to the lack of a strong opinion or interest on the topics of the survey, or to a refusal to answer a
sensitive question. Suppose the xk`’s are related to an assumed underlying latent continuous variable;
they are the indicators of a latent trait denoted by θk. If the m items are selected so that they are
particularly relevant for the survey and include the survey variable upon which the response mechanism
is believed to depend, then we may interpret θk as the will or the propensity to respond to the survey of
unit k. We can obtain estimates of θk using Model (1) on xk for k ∈ r. If we knew θk for all units in s,
we could use it as another covariate in Model (4). In the case in which no covariates z were available,
Model (4) could be rewritten simply as

(5) pk = P (Rk = 1|θk) =
1

1 + exp(−(α0 + α1θk))
.

To compute a value θk for a nonrespondent k ∈ r̄, we consider that unit nonresponse gener-
alizes item nonresponse. In fact, following Chambers and Skinner (2003, p.278), ‘from a theoretical
perspective the difference between unit and item nonresponse is unnecessary. Unit nonresponse is just
an extreme form of item nonresponse.’ Thus, a nonrespondent can be considered as a unit that does
not answer any item ` and thus xk` = 0, for all ` = 1, . . . ,m, and k ∈ r̄. Therefore, if we assume that
the causes of item nonresponse and unit nonresponse are related, Model (1) allows the computation of
θk also for all k ∈ r̄.

Model (5) cannot be directly fitted, since the problem of separation is present. This problem is
observed in the fitting process of a logistic regression model if the likelihood converges to a finite value
while at least one parameter estimate diverges to (plus or minus) infinity. Separation occurs here since
the zero cases (Rk = 0 for k ∈ r̄) have the same value of the covariate θk. To overcome this problem
two practical solutions can be used here: (i) add a jitter to the value of θk (some noise to the θk value
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of the cases with Rk = 0), or (ii) add some artificial cases with Rk = 0 and with different values of θk

randomly generated from N(0, 1) distribution and then conduct the analysis in the usual fashion on
the resulting data.

Adjustment for unit and item nonresponse: the proposed estimators

Recall that we have a variable of particular interest yj and that item nonresponse is present for
it. Let ry = {k ∈ r|xkj = 1} be the set of respondents for variable yj . If we wish to estimate the
population mean Ȳj =

∑N
k=1 ykj/N of yj , then a Hájek type naive estimator that does not correct

neither for unit nor for item nonresponse is given by

(6) ̂̄Y j,naive =
∑
k∈ry

ykj

πk
/

∑
k∈ry

1
πk

.

Imputation is often used to handle item nonresponse in survey practice. It consists in replacing missing
values of items by imputed values. The naive estimator that uses imputed values y∗kj of ykj when
xkj = 0 is given by

(7) ̂̄Y imp

j,naive =
( ∑

k∈ry

ykj

πk
+

∑
k∈r\ry

y∗kj

πk

)
/
( ∑

k∈r

1
πk

)
.

Reweighting item responders is an another approach to handle item nonresponse. Moustaki and
Knott (2000) propose to weight item responders by the inverse of the fitted probability of item response
q̂k`, assuming qk` > 0. Therefore, a possible adjustment weight for item and unit nonresponse associated
to unit k ∈ ry is 1/(p̂kq̂kj). By considering different combinations of the aforementioned methods we
propose the following set of estimators:

• a Horvitz-Thompson estimator adjusted for item and unit nonresponse via reweighting

(8) ̂̄Y j,q_HT =
∑
k∈ry

ykj

πkp̂kq̂kj
/N ;

• a Hájek type estimator adjusted for item and unit nonresponse via reweighting

(9) ̂̄Y j,q_Hajek =
∑
k∈ry

ykj

πkp̂kq̂kj
/

∑
k∈ry

1
πkp̂kq̂kj

;

• a Horvitz-Thompson estimator adjusted for unit nonresponse via reweighting and for item non-
response using imputation (y∗kj for ykj when xkj = 0)

(10) ̂̄Y imp

j,q_HT =
( ∑

k∈ry

ykj

πkp̂k
+

∑
k∈r\ry

y∗kj

πkp̂k

)
/N ;

• a Hájek type estimator adjusted for unit nonresponse via reweighting and for item nonresponse
using imputation (y∗kj for ykj when xkj = 0)

(11) ̂̄Y imp

j,q_Hajek =
( ∑

k∈ry

ykj

πkp̂k
+

∑
k∈r\ry

y∗kj

πkp̂k

)
/

∑
k∈r

1
πkp̂k

.

The asymptotic properties of estimators (8)-(9) and of estimators (10)-(11) depend on the as-
sumptions about the response and imputation mechanism. In particular, all estimators assume a second

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS004) p.3899



phase of sampling with unknown response probabilities. If we ignore estimation of θk in Model (5),
the results in Kim and Kim (2007) hold here as well. As of the imputation process, Estimators (8)-(9)
follow a fully weighted approach, while Estimators (10)-(11) a full imputation approach (e.g. Särndal
and Lundström, 2005, Chap. 12). The former assume a third phase of sampling with response proba-
bilities from Model (1): assumptions similar to those in Kim and Kim (2007) can be established when
considering conditional maximum likelihood estimates for the parameters βj0 and βj1 in q̂kj . For the
latter, properties depend on the validity of the imputation model considered to obtain y∗kj .

Simulation study and concluding remarks

Due to the lack of space, only results from one of a set of simulation studies are presented, to
evaluate the finite sample performance of the estimators proposed in the previous section. We consider
the Abortion data set analyzed by Bartholomew et al. (2002) and formed by four binary variables
extracted from the 1986 British Social Attitudes Survey and concerning attitude to abortion. N = 379
individuals answered to the following questions after being asked if they agreed that the law should
allow abortion under the circumstances presented under each item: (1) the woman decides on her own,
(2) the couple agrees that they do not wish to have a child, (3) the woman is not married and does not
wish to marry the man, and (4) the couple cannot afford any more children. We consider item (2) as
our variable of interest yj , with a population mean given by 59.4%. On the population level, the unit
response probabilities were generated under the response function

(12) pk =
exp (0.7 + yk2 + 0.2ε)

1 + exp (0.7 + yk2 + 0.2ε)
,

with ε randomly generated from U(0, 1) distribution. We have added the variable ε to create several
values for pk since yk2 is binary. The population mean of pk approximately equals 0.7.

To generate item response probabilities qk`, a proportion of ‘no’ responses on each item, but none
of the ‘yes’ responses, was changed to missing. Thus, we have forced the nonresponse to depend on
the variable of interest. The change to missing was doing with a probability qk` randomly generated
from U(0, 1) distribution. The values ykj = 1 corresponded to the ‘yes’ responses in the initial data set.
Thus, for the values ykj = 1 we have considered a probability qk` of 1. We have drawn 10, 000 simple
random samples without replacement from the Abortion data with n = 50. In each sample s, units
have been classified as respondents according to Poisson sampling, using the probabilities pk computed
in (12) and resulting in the set r. Then, the matrix with entries {xk`}k∈r,`=1,...,4 is constructed for each
set r. Missing values (xk` = 0) have been created according to Poisson sampling with the probabilities
qk` given before. Units with all zero entries have been deleted from the set r.

Estimators (6)-(11) have computed for each replicate. The Horvitz-Thompson estimator, i.e. the
sample mean, is also computed as a benchmark in a condition of no item and unit nonresponse and
will be denoted by ̂̄Yn. In addition, estimators using the true values for pk and qkj are also computed.

They will be denoted by ̂̄Y true

j,q_HT and ̂̄Y true

j,q_Hajek corresponding to Estimators (8) and (9), respectively.
For Estimators (7), (10) and (11), imputed binary values y∗k2 have been computed according to Poisson
sampling, using each time a probability of 0.25 (1/ number of items). The simulations were carried out
in R version 2.12.1, and using the R package ‘ltm’ (Rizopoulos, 2006) to fit the latent trait models.

The performance of the different estimators is given in Table 1 in terms of the Monte Carlo
estimate of the (i) bias, Ê( ˆ̄Y )− Ȳ with Ê( ˆ̄Y ) =

∑10,000
i=1

ˆ̄Yi/10, 000, (ii) square root of variance, where
the latter is

∑10,000
i=1 ( ˆ̄Yi−Ê( ˆ̄Y ))2/9, 999, (iii) mean squared error and (iv) relative bias, (Ê( ˆ̄Y )− Ȳ )/Ȳ .

Estimators (8) and (9) perform better than Estimator (6) in terms of bias. The same conclusion is
available for estimators (10) and (11) comparing to Estimator (7). Note that Estimators (8) and
(10) reduce the bias more rapidly than Estimators (9) and (11), respectively. Note also that all the
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estimators using p̂k have a standard deviation slightly larger than the naive estimators, but perform
better in term of MSE.

Table 1: Results for the simulation study on the Abortion data: Monte Carlo bias, square root of
variance, mean squared error, relative bias of the estimators

Estimator Equation bias (%)
√

var (%) mse rel bias(%)̂̄Yn 0.1 6.6 0.004 0.0̂̄Y j,naive (6) 28.5 6.0 0.085 48.0̂̄Y imp

j,naive (7) 15.3 7.0 0.028 25.8̂̄Y j,q_HT (8) 3.3 11.8 0.015 5.6̂̄Y j,q_Hajek (9) 20.1 11.3 0.053 33.8̂̄Y true

j,q_HT 0.1 7.8 0.006 0.2̂̄Y true

j,q_Hajek 4.2 15.7 0.026 7.0̂̄Y imp

j,q_HT (10) -0.3 8.1 0.007 -0.5̂̄Y imp

j,q_Hajek (11) 10.8 7.6 0.017 18.2

The proposed reweighting system was used in two estimators, a Hájek type estimator and a
Horvitz-Thompson type estimator, using both imputation and reweighting methods to deal with item
nonresponse. The main goal was to reduce non-response bias in the estimation of the population mean.
The previous estimators performed well in our simulation study compared to the naive estimator, and
the gain in efficiency was substantial in certain cases.
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