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Understanding the dynamic behavior of business cycles enables policy makers in designing 
strategies aimed at mitigating the effects of these cycles or fluctuations.117 Measuring business cycles 
among Pacific Island countries (PICs) is critical in determining stylised facts (e.g., whether business 
cycles among PICs are synchronised or if PICs have different business cycle phases etc.) that 
facilitates identification of appropriate policy response and strategies to counter the effects of 
aggregate macroeconomic fluctuations at the national and regional levels. In the Pacific Islands 
region, there is currently no specific evidence of business cycle stylised facts concerning PICs due, in 
part, to the lack of relevant, consistent and quality macroeconomic time series data (Lahari, et. al, 
2011). Hence, there are currently no empirical studies undertaken on business cycles for the PICs 
apart from a recent (forthcoming) research by Lahari (2011).118 This analysis makes an attempt to fill 
this void by measuring business cycles for six PICs namely Fiji, Papua New Guinea, Samoa, Solomon 
Islands, Tonga and Vanuatu. In addition, the degree of the business cycles for these PICs is assessed 
for similarities among the cycles.  
 

This analysis uses the newly constructed quarterly real GDP by Lahari et al. (2011) from 
1980:1 to 2006:4. To ensure that the extracted business cycles are reliable and robust, comparing the 
outcomes from a number of filtering or decomposition methods are suggested (Canova, 1998). Two 
relevant methods are employed in this analysis. These include a non-parametric univariate filter, 
namely Baxter and King’s (1999) band-pass filter and a parametric (model-based) decomposition 
procedure by Beveridge-Nelson (1981) following the state-space approach by Morley et al. (2003). In 
addition, an econometric testing methodology by Vahid and Engle (1993) is applied in assessing the 
extent of common business cycle synchronisation.  

 
The choice of the Baxter-King filter was determined given its wider preference from a 

theoretical and conceptual basis, and considering the context for PICs. Analysis of the data for PICs 
demonstrates that the specified range for business cycles fits within the stated definition. Secondly, 
the choice of the Beveridge-Nelson (BN) (1981) univariate procedure provides another dimension to 
evaluating the business cycles. In contrast to the cycles generated by the Baxter-King filter that are 
defined within a specific period and whose cycles appear relatively smooth and persistent, the BN 
cycles are normally short and noisy (Morley et al. 2003). Thus in retrospect, the BN generated cycles 
for the PICs should reflect to some extent the behaviour of inconsistent growth phases among PICs 
that have been predominantly impacted by transitory shocks (e.g., frequent cyclones and volatility of 
world export commodity prices). In contract to the Baxter-King filter and the BN decomposition 
method, the testing method for common cycles by Vahid and Engle (1993) embraces the concept of 
the serial correlation common feature and cointegration and tests for common cycles among PICs. 
The technical details of the methodologies are illustrated in the Appendices. 
 

The estimated business cycles generated by the Baxter-King filter and the BN decomposition 
methods are presented in Figure 1. The horizontal axis represents the quarters from 1980 to 2006. The 
vertical axis represents the percent of cyclical deviations. As expected, the BN cycles for the PICs 
appear generally noisy compared to the Baxter-King cycles. The latter cycles appeared smoother and 
more persistent. As stated earlier, this is attributed to the varying properties associated with the 
respective methods.  

                                                 
117 See Burns and Mitchell (1946), Canova (1998), among others, for a discussion on the conceptual and 
methodological issues of business/growth cycles.  
118 See Lahari (2011). 
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The common cycle test does not reject the null at the 5% significance levels. This indicates 
the presence of at least two co-feature vectors corresponding to two synchronised common cycles. 
The presence of the synchronised common cycles is an important precondition for a region-wide 
monetary policy framework such as in a monetary union. However, a single region or union-wide 

Figure 1: Business Cycles for the PICs - Baxter-King Cycles and BN Cycles,  
1980: Qtr 1 to 2006: Qtr 4 
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common policy to be effective depends on a single synchronised common business cycle among the 
PICs. Lastly but not least, this is a first attempt to measure business cycles for PICs and thus this work 
provides a useful contribution to new research and analysis of business cycles in Pacific Island region. 
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APPENDIX 1:  Baxter and King (1999) Filter 

 
Baxter and King (1999) approximates the form of a 2-sided infinite moving-average, ܺ௧, and derives a 
new series, ܺ௧஻௄ in the following form,         

ܺ௧஻௄ ൌ ෍ ܽ௞ܺ௧ି௞ ൌ ܽሺܮሻܺ௧

௄

௞ୀି௄

                                                                                                ሺA. 1ሻ 

 
 where L is the lag operator and symmetry is imposed on moving averages where Kk aa −= for k = 
1,…, K to isolate trends in the series. The filtered stationary series, ܺ௧஻௄, in equation (A.1) is derived 
within the premise of the frequency-domain theory, in the form of the Cramer representation,  
 

ܺ௧ ൌ න ሺ߱ሻ݀߱ߦ
గ

ିగ
                                                                                                                       ሺA. 2ሻ 

 
where ߦሺ߱ሻ represents the random periodic components that are mutually orthogonal 
ሺߦܧሺ߱ଵሻߦሺݓଶሻ′ ൌ ଵ߱ ݎ݋݂ 0  ് ߱ଶሻ. Thus the filtered time series, ܺ௧஻௄ in equation (A.1) can be 
represented as, 
 

 ܺ௧஻௄ ൌ ׬ ሺ߱ሻ݀߱గߦሺ߱ሻߙ
ିగ                                                                                             (A.3) 

 
where ߙሺ߱ሻ ൌ   ∑ ܽ௛݁ି௜ఠ௛௄

௛ୀି௄  represents the frequency-response function of the liner filter. It is the 
weight attached to the periodic component ߦሺ߱ሻ. Thus from a frequency-domain logic, a band-pass 
filter, constructed from two low-pass filters, passes only frequencies െ߱ଵ ൑ ߱ ൑ ߱ଵ. It will have a 
frequency response function given by ߚሺ߱ሻ ൌ 1 for |߱| ൑ ߱ଵ and  ߚሺ߱ሻ ൌ 0 for |߱| ൐ ߱ଵ within a 
time domain representation given by the two-sided infinite-order moving-average, ܾሺܮሻ ൌ
∑ ܾ௛∞
௛ୀି∞ ௛  with weights given by ܾ௛ܮ ൌ ׬ ሺ߱ሻ݁௜ఠ௛݀߱గߚ

ିగ . The weights are simply ܾ଴ ൌ ߱ଵ/ߨ and 
ܾ௛ ൌ ሻܮሺ݄߱ଵ/݄߱ሻ. To approximate the ideal filter with a finite K-th order moving average ܽሺ ݊݅ݏ ൌ
∑ ܽ௛௄
௛ୀି௄  ௄ሺ߱ሻ, the aim is to choose the weights of theߙ ,௛ with frequency response functionܮ

approximating filter to minimize a quadratic loss function ܳ ൌ ׬ ሺ߱ሻߚ| െ ௄ሺ߱ሻ|ଶ݀߱ߙ
గ
ିగ  so as to 

minimise the discrepancies between the finite-sample filter and the ideal band-pass filter. An 
approximation to the ideal band-pass filter that passes frequencies between െ߱ଵ ൑ ߱ ൑ ߱ଶ is then 
constructed with cut-off frequencies ߱ଵ and ߱ଶ. In the case where stationary time series are required 
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to be filtered from non-stationary series, Baxter and King show that the optimal approximate low-pass 
filter weights, ܽ௛ ൌ ܾ௛ ൅ ߠ where ߠ can be adjusted by the adjustment coefficient ,ߠ ൌ ሺ1 െ
∑ ܾ௛௄
௛ି௄ ሻ/ሺ2ܭ  ൅ 1ሻ. The weights for the optimal approximate band-pass filter are ܽ௛ ൌ ሺതܾ௛ ൅ ܾ௛ሻ ൅

ሺߠҧ െ  are the adjustment coefficients for the upper and lower cut-off filters  ߠ ҧ andߠ where ,(ߠ
respectively. In order to implement the BK filter, the researcher must first choose the range of 
durations (periodicities) to pass through, that is, the cut-off frequencies, ߱ଵ and ߱ଶ, and the order of 
the moving average, K.    
 
 
APPENDIX 2:  Beveridge-Nelson (1981) Decomposition 

 
Beveridge-Nelson (BN) (1981)’s univariate decomposition, following from Morley et al.’s (2003) 
approach, begins with the theoretical equivalence of the following unobserved-components (UC) 
representation,  
 

ܺ௧ ൌ ௧ܶ ൅  ௧,              (B.1)ܥ
௧ܶ ൌ ௧ܶିଵ ൅ ߤ ൅ ௧ߦ                ,௧ߦ ׽ ݅. ݅. ݀. ܰሺ0, ܳక

ଶሻ,         (B.2) 
 

where Xt is the observed series, T is the unobserved stochastic trend assumed to be a random walk 
with mean growth rate, μ, and Ct is the unobserved stationary cycle.119 The trend innovation, ߦ௧, is 
independently and identically distributed with mean zero and variance, ܳక

ଶ. This process allows that Ct 

is a stationary and invertible ARMA(p, q) process whose cyclical innovations, ߳௧, may be 
contemporaneously cross-correlated with trend innovations, ߦ௧,  where,   
 

߶௣ሺܮሻܥ௧ ൌ ߳                 ,ሻ߳௧ܮ௤ሺߠ ׽ ݅. ݅. ݀ ܰሺ0, ܳఢଶሻ              (B.3) 

,௧ߦሺݒ݋ܥ ߳௧േ௞ሻ ൌ ቄܳ߳ߦ  
0

for ݇ ൌ 0,
otherwise 

 
The above covariance can take the value of zero or non-zero. Restricting the value of the covariance 
to zero may address the problem of correlation between the innovations of the stochastic trend and the 
cycle. To specify the necessary conditions, it was proposed that the autoregressive component (p) = 2, 
as applied by Morley et al. (2003). This engages the cyclical process to be periodic. The UC-
ARMA(p, q) model is then cast into state-space form. This process implies that the trend and cycle 
innovations are uncorrelated and that the model is augmented to include ܳఢక ൌ 0.120 However, Morley 
et al. (2003) argue that differences in the implied trend and cycle in some data may often imply a non-
zero covariance suggesting that the unobserved model may be misspecified. To resolve this, the 
conditions are specified in the context of the reduced-form ARIMA(p, d, q) since the UC-ARMA(p, 
q) implies an equivalent univariate ARIMA(p, d, q) representation.  Substituting equations (B.2) and 
(B.3) into (B.1), we get the reduced-form ARIMA (p, d, q) where ∆Xt  takes the form,  
 

 ߶௣ሺܮሻሺ1 െ ሻܺ௧ܮ ൌ ߶௣ሺܮሻߤ ൅ ߶௣ሺܮሻߦ௧ ൅ ሻሺ1ܮ௤ሺߠ െ .ሻ߳௧                                              ሺBܮ 4ሻ       
            

where the right-hand side of equation (E2.4.) represent the sum of the MA(p) and MA(q* + 1) 
processes. This means that the UC-ARMA(p, q) and the reduced-form ARIMA(p, d, q) must have 
MA order q* = max (p, q + 1). It implies that the autoregressive (AR) component of equation (E2.4) 
and the reduced-from ARIMA(p, d, q) are equivalent. Therefore the reduced-form ARIMA(p, d, q) 
must have q + 2 MA parameters and p ≥ q + 2. Following from Morley et al. (2003) and earlier 
discussion by Morley (2002), the state-space approach is applied for computing the exact BN cycle 
given a reduced-form ARIMA(2,1,2) model. The state-space framework generalises that the reduced-
                                                 
119 The ߤ is allowed to behave as a random walk and in some cases with an addition of an irregular term. This 
change may have little influence on the estimated cycle (Morley et al. 2003).  
120 This set-up continues to be standard framework for the treatment of trend-cycle decomposition in the state-
space framework (See Morley et al. 2003, among others). 

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS011) p.4061



5 
 

form ARIMA(2,1,2) model when cast in state-space form is able to generate accurate forecasts since 
∆ܺ௧ െ ߤ ൌ ሾ݄ଵ, ݄ଶ …݄௞ሿܺ௧, where ݄ଵ, ݄ଶ …݄௞ are the weight of the i-th element of ܺ௧, in determining 
ሺ∆ܺ௧ െ    ,is a liner combination of the first elements in the state-vector Zt, given as (ߤ – Xt∆) ሻ. Thusߤ
         

 ܼ௧ ൌ ௧ିଵܼܨ ൅ ,௧~ ܰሺ0ߥ          ,௧ߥ ߰ሻ           (B.5) 
 
where the eigenvalues of F take the values less than one in modulus. Thus, the BN trend is computed 
as, 
 

௧ܶ
஻ே ൌ ܺ௧ ൅ ሾ݄ଵ, ݄ଶ …݄௞ሿܨሺܫ െ  ሻିଵܼ௧|௧           (B.6)ܨ

 
where the ܼ௧|௧ term assumes the realised value of the state-vector since the elements are all observed 
at time t. The BN cycle is, 
 

௧஻ேܥ ൌ  െሾ݄ଵ, ݄ଶ …݄௞ሿܨሺܫ െ  ሻିଵܼ௧|௧                        (B.7)ܨ
 
                                                              
APPENDIX 3:  Common Cycle Test 
 
The common cycle testing approach (Vahid and Engle, 1993) is a test for the existence of cofeature 
combinations or common cycles. The test is preformed sequentially beginning with the null that there 
is at least one co-feature combination, s, against the alternative that there is none. If this does not hold, 
the null of at least two co-feature combinations are tested until the number of linear combinations is, s 
≤ N−r; N represents the number of variables in the vector autoregressive model; r represents the of 
number of cointegrating vectors in the system. Thus the test statistic that determines the actual 
number of co-feature combinations, s, is presented as, 
 

,݌ሺܥ ሻݏ ൌ െሺܶ െ ݌ െ 1ሻ෍ln ሺ1 െ ℓ௝ଶ
௦

௝ୀଵ

ሻ   

   
where the ℓ௝

ଶ, for j=1,…,s , are the s smallest estimated squared canonical correlations between ΔXt 

and its related history ܪሺ݌ሻ = (ΔXt−1,…,ΔXt−p, et−1) where et−1 is the lagged error-correction term. T is 
the total number of observations of the variables of interest. Accordingly, when defining Zt as the 
matrix of elements consisting of ΔXt and ିܪଵ as the matrix of elements consisting of ܪሺ݌ሻ, then 
ℓ෨ଶ, … , ℓ෨௦

ଶ are derived as the s smallest eigenvalues of ሺܼ′ܼሻିଵܼ′ ିܪଵሺିܪଵ′ ′ଵିܪ ଵሻିଵିܪ ܼ. This test 
statistic ܥሺ݌,  ሻ under the null has an asymptotic ߯ଶ distribution with s(Np+r) - s(N−s) degrees ofݏ
freedom, where p is the lag order of the vector error correction model. 
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