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Suppose that n independent binary random variables Y1, . . . , Yn are observed, where Yi is dis-

tributed as Bernoulli with success probability p(Yi = 1|β) = Ψ(xT
i β). β is a k× 1 vector of unknown

parameters, xT
i = (xi1, . . . , xik) is a vector of known covariates, and Ψ is a known nonnegative func-

tion ranging between 0 and 1. The standard approach to model the dependence of binary data on

explanatory variables under the generalized linear models setting is performed through a cumulative

density function (cdf) Ψ. For instance, the probit model is obtained when Ψ is the standard normal

cdf and the logit model when Ψ is the logistic cdf (see, for example, McCullagh and Nelder, 1989).

With the upsurge of MCMC methods in the nineties, the new simulation tools allowed to efficiently

apply Bayesian regression methods.

A Bayesian approach of a binary regression model is proposed. The inverse of the exponential

power cdf is used as the link function. The exponential power (EP) family (Box and Tiao, 1973)

includes the normal distribution and incorporates additional shapes, including platykurtic and lep-

tokurtic ones. This means that distributions with both lighter and heavier tails compared to the

normal one can be achieved. These distributions allow the modeling of kurtosis, providing, in general,

more flexible fits to experimental data than the normal distribution. The proposed approach contains,

among others, the probit model and an approximation to the logistic model as special cases.

The approach’s implementation is based on two main ideas. The first one is to develop a data

augmentation framework by introducing latent variables in a similar way as in Albert and Chib (1993).

The second one is using the mixture representation for the EP distribution suggested by Walker and

Gutiérrez-Peña (1999). These two ideas are exploited to derive efficient Gibbs sampling algorithms

for both informative and non informative settings. In contrast to the work of Haro-López et al.

(2000), the full conditional distributions can be directly generated from by using Gibbs sampling, so

no Metropolis-Hasting method needs to be applied.

We introduce n independent latent variables Z1, . . . , Zn, where Zi is distributed as exponential

power EP(xT
i β, 1, θ) and define Yi = 1 if Zi > 0, and Yi = 0 if Zi ≤ 0. By using random variables Ui,

the distribution of Zi is written as a mixture:

Zi|y,β, σ, θ, ui ∼

U
(
xTi β − σu

θ/2
i , xTi β + σu

θ/2
i

)
I [zi > 0] if yi = 1

U
(
xTi β − σu

θ/2
i , xTi β + σu

θ/2
i

)
I [zi ≤ 0] if yi = 0

Ui|θ ∼ Ga (1 + θ/2, 1/2) ,

where I[·] denotes the indicator function.

The following step is defining the prior distributions. We consider β ∼ F and θ ∼ U(0, 2], where

F is the multivariate normal distribution family Nk(b,B). The parameter θ is allowed to vary over its
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range, providing flexibility to fit different shapes. Also, an improper prior distribution like π(β) ∝ 1

is considered.

The full conditional distributions of Z, U, β and θ are derived:

• The full conditional distributions of Z1, . . . , Zn are independent, with

Zi|y,u,β, θ ∼

U
(
max

{
0, xTi β − σu

θ/2
i

}
,max

{
0, xTi β + σu

θ/2
i

})
if yi = 1

U
(
min

{
0, xTi β − σu

θ/2
i

}
,min

{
0, xTi β + σu

θ/2
i

})
if yi = 0

.

• The full conditional distributions of U1, . . . , Un are independent, with

Ui|y, z,β, θ ∼ Exp
(
1
2

)
I

[
ui >

∣∣∣∣zi − xTi β

σ

∣∣∣∣2/θ
]
.

• We denote βT = (βj ,β
T
(−j)), β

T
(−j) = (β1, . . . , βj−1, βj+1, . . . , βk). Since the distribution of β is a

multivariate normal distribution, then the conditional distribution of βj given β(−j) is a normal

distribution. Then, the posterior distribution of βj conditioned on Z, U, β(−j) and θ is given by

βj |y, z,u,β(−j), θ ∼ N(b∗j ,B
∗
j )I
[
βj ∈

(
β
j
, βj

)]
for j = 1, . . . , k, where

β
j

= max
i

zi − xT
i(−j)β(−j) − σu

θ/2
i

xij

 ,

βj = min
i

zi − xT
i(−j)β(−j) + σu

θ/2
i

xij

 ,

b∗j = bj − Bj(−j)B
−1
(−j)(−j)b(−j),

B∗
j = Bjj − Bj(−j)B

−1
(−j)(−j)B(−j)j ,

xT
i(−j) = (xi1, . . . , xi,j−1, xi,j+1, . . . , xik),

bT = (bj ,b(−j)),

BT =

(
Bjj Bj(−j)

B(−j)j B(−j)(−j)

)
.

If π(β) ∝ 1 is considered, then

βj |y, z,u,β(−j), θ ∼ U
(
β
j
, βj

)
.

• The posterior density of θ given Z, U and β is given by

p(θ|y, z,u,β) ∝ 1

Γ(1 + θ/2)n2nθ/2
I
[
θ ∈ (θ, θ]

]
where

θ = max

{
0,max

i∈Θ+

2 log(|zi − xTi β|/σ)
log(ui)

}
,Θ+ = {i : log(ui) > 0},

θ = min

{
2, min

i∈Θ−

2 log(|zi − xTi β|/σ)
log(ui)

}
,Θ− = {i : log(ui) < 0}.
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The following example shows the applicability of the proposed approach and its high performance

when comparing with other competing models.

Adult respiratory distress syndrome

Adult respiratory distress syndrome (ARDS) is a complication in many critically ill patients.

The usual diagnosis of ARDS is based on clinical findings of refractory respiratory failure and x-rays

of the lungs showing fluid accumulation. Rocker et al. (1988) used lung images obtained after labeling

the plasma protein transferrin in patients meeting the clinical criteria for ARDS and in patients who

did not, to calculate a lung protein accumulation index (P ) that is larger as there is more protein

in the lungs. They also recorded other characteristics of these patients, including their sex (S), age

(A), x-ray lung fluid score (R), and amount of oxygen in their blood (O). Figure 1 shows the data

(n = 44 patients), the points drawn with light gray color correspond to the patients with absence of

ARDS (yi = 0), and the points drawn with dark gray color correspond to the patients with presence

of ARDS (yi = 1).

ARDS data
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Figure 1: ARDS data: the points drawn with light gray color correspond to the patients with absence

of ARDS, and the points drawn with dark gray color correspond to the patients with presence of

ARDS.

After analyzing the most influential covariates, simplified models are considered:

Ψ−1(pi) = β0 + β1Ai + β2Oi + β3Pi,

with i = 1, . . . , 44.
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In a non informative setting, we generated a total of 110, 000 iterations of MCMC for each

model. Then, it is considered a burn-in of 10, 000 and saving one out of 10 observations. DIC is used

to compare the models (see Table 1).

Estimated DICs

Model DIC D ρ̂D
Normal 39.250 35.850 3.400

EP-link (θ = 1) 39.746 36.156 3.590

t-link (ν = 8) 40.210 36.255 3.955

EP-link (θ = 1.35162) 38.991 35.703 3.288

EP-link (θ r. v.) 38.239 35.323 2.916

Table 1: Estimated DICs for models fitted to ARDS data.

The results obtained with normal-link and EP-link (θ = 1) are very close. The differences are

due to simulations, since they represent the same probit model. An interesting result is that the logit

model with the EP-link approximation is better than the one obtained with the t(8)-link. Finally, note

that the EP-link that considers θ as a random variable is the best model with the best fit (D = 35.323)

and lowest number of effective parameters (ρ̂D = 2.916).

Now, we illustrate the application of the informative approach for the EP-link (θ r.v) model. A

multivariate normal prior distribution for β is used, β ∼ N(b,B), which is also the most commonly

used prior for regression parameters. In order to specify b and B, we utilize the empirical Bayesian

approach (see Carlin and Louis, 1996), leading to

b =


6.99

-0.06

-0.56

2.02

 and B =


10.813 -0.085 -0.520 0.356

-0.085 1.001 0.001 -0.008

-0.520 0.001 1.053 -0.048

0.357 -0.008 -0.048 1.736

 .

Based on the prior obtained, we derive the posterior distributions. With the same MCMC

specification as in the noninformative setting, the chain seems to have converged.

We used this generated sample to evaluate the posterior distribution. The simulated parameters

are summarized in Table 2, whereas Figure 2 displays the posterior distributions with the 90% and

95% HDP intervals.

Summary of the posterior estimates

Standard 95% HDP

Variable Mean Median deviation interval

β0 7.6003 7.6142 2.4501 (2.6912, 12.2177)

β1 (A) −0.0572 −0.0555 0.0334 (−0.1224, 0.0072)

β2 (O) −0.6358 −0.6164 0.2441 (−1.1235,−0.1814)

β3 (P ) 2.0583 2.0161 0.7441 (0.6192, 3.4684)

θ 1.7120 1.7720 0.2494 (1.2500, 2.000)

Table 2: Summary of the posterior estimates for the parameters of the EP-link model.

The coefficient of protein (P ) is positive, indicating that high lung protein is associated with a

high probability of having ARDS. Both age (A) and oxygen (O) have negative effects. Thus, higher
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Posterior distributions and HDP intervals
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Figure 2: Estimated posterior distributions and 90% and 95% HDP intervals for the parameters of

the EP-link model.

oxygen is associated with lower probability of ARDS, which makes sense because ARDS is clinically

defined in terms of low oxygenation. Similarly, higher age is associated with a lower probability of

ARDS. This is justified because in this sample the ARDS patients tend to be younger.

A very interesting result has been obtained for the shape parameter θ, since its 95% HDP interval

is (1.25, 2). The flexibility of the EP-link model with θ as a random variable has allowed that this

model chooses the values of θ for the best fit. Note that this range of values (that give leptokurtic

cdfs) is far from θ = 1, that corresponds to the probit model.
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ABSTRACT

A flexible Bayesian approach of a generalized linear model is proposed to describe the depen-

dence of binary data on explanatory variables. The inverse exponential power cumulative distribution

function is used as the link of the binary regression model. The power exponential family provides

distributions with both lighter and heavier tails compared to the normal one, and includes the normal

and an approximation to the logistic distribution as particular cases. The idea of using a data aug-

mentation framework and a mixture representation of the power exponential distribution is exploited

to derive efficient Gibbs sampling algorithms for both informative and non informative settings. An

example illustrate the performance of the proposed approach when comparing with other competing

models.
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