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1. Introduction

Symbolic Data Analysis (SDA) has been introduced as a domain related to multivariate analysis,
pattern recognition and artificial intelligence in order to introduce new methods and to extend classical
data analysis techniques and statistical methods to symbolic data (Billard and Diday, 2003). In SDA
a variable can assume as a value an interval from a set of real numbers, a set of categories, an ordered
list of categories or even a histogram. These new variables could take into account the variability
and/or uncertainty presented in the data. The main objective of SDA is to increase the statistical
techniques to apply to these types of data.

Moreover, interval-valued data arise in practical situations such as recording monthly interval
temperatures in meteorological stations, daily interval stock prices, among others. Another source of
interval data is the aggregation of huge data-bases into a reduced number of groups. Therefore, tools
for interval-valued data analysis are very much required.

Nowadays, different approaches have been introduced to analyze interval-valued data. In the
field of SDA, several suitable tools for managing interval-valued data have been discussed in the
literature. Bertrand and Goupil (2000) and Billard and Diday (2003) introduced central tendency and
dispersion measures suitable for interval-valued data. De Carvalho (1995) proposed histograms for
interval-valued data. Concerning factorial methods, Cazes et al. (1997) and Lauro and Palumbo(2000)
proposed principal component analysis methods suitable for interval-valued data. Palumbo and Verde
(2000) and Lauro et al. (2000) generalized factorial discriminant analysis (FDA) to interval-valued
data. Concerning interval-valued time series, Maia et al. (2008) have introduced autoregressive
integrated moving average (ARIMA), artificial neural network (ANN) as well as a hybrid methodology
that combines both ARIMA and ANN models in order to forecast interval-valued time series. Other
contributions in the SDA field were proposed by Groenen et al. (2006) and Ichino et al. (1996), among
others.

In regression analysis of quantitative data, the items are usually represented as a vector of
quantitative measurements (Schéffe 1959, Draper and Smith 1981, Montgomery et al. 1982). The
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generalized linear models (GLMs) represent a major synthesis of regression models by allowing a wide
range of types of response data and explanatory variables to be handled in a single unifying framework.
These models are based on the exponential family of distributions and represent a very important
regression tool due to their flexibility and applicability in practical situations (McCullagh and Nelder,
1989). In the field of SDA, Billard and Diday (2000) presented the first approach to fit a linear
regression model on interval-valued data sets. Their approach consists of fitting a linear regression
model on the midpoint of the interval values assumed by the variables in the learning set and to apply
this model on the lower and upper boundaries of the interval values of the explanatory variables to
predict, respectively, the lower and upper boundaries of the interval values of the dependent variable.
Lima Neto and De Carvalho (2008) improved the former approach presenting a new method based
on two linear regression models, the first regression model over the midpoints of the intervals and the
second one over the ranges, which reconstruct the boundaries of the interval-values of the dependent
variable in a more efficient way when compared with the Billard and Diday’s method.

At this time, the regression models for interval-valued data attack the problem from an opti-
mization point of view. Recently, Lima Neto et. al. (2011) propose the bivariate symbolic regression
models (BSRM) based on the GLM framework. Inference techniques, residual analysis and diagnostic
measures are available for this regression approach to interval-valued variables.

Although this approach has had great relevance in the context of regression models for symbolic
interval data, since it is possible to perform inference on the model, through hypothesis testing,
confidence intervals, and is possible to perform the analysis of residuals and diagnostic, which consists
of basic steps to choose accurate models, there is a limitation on the joint distribution of random vector.
Based on this fact, in the next section we propose a regression model to symbolic interval-valued data
based on copula’s theory, which expand the framework of joint distributions for the bivariate random
vector Y = [Y1,Ya].

2. Copula Interval Regression Model (CIRM)

Let Y = {y1,...,yn} be a set of observations that represents a random sample of the interval-
valued variable Y. Each observation y; = [yri,yu:] € Y is defined as an interval y € & = {[yr,yu] :
yr,yu € R,yr < yy} and represents the observed value of the interval variable Y. An interval of real
values is an infinity list of values and it is difficult to take into account the whole information inside it.
Despite the loss of information, we consider an interval-valued variable Y as a two-dimensional or a
bivariate quantitative feature vector y; = (y1, y2i), where the variables Y7 and Y, are one-dimensional
random variables representing, for example, the lower and upper boundaries or the midpoint and
half-range of the intervals or any other pair of interval features possible to be represented.

To model the probability distribution of Y7 and Y5 we use copulas approach. Copulas are the part
of a multivariate distribution function that completely describes the dependence between the variables
of interest and they have become a very popular tool to model dependencies. Copula functions allow
for modeling joint multivariate distributions in a simple and extremely flexible way. Copulas are
able to yield any kind of dependence structure independently of the marginal distributions. More
precisely, in a two dimensional space, the theorem proposed by Sklar (1959) state that: Let H be a
joint distribution function with margins F; and F. Then there exists a copula C such that for all

(y1,12) R,
H(y1,y2) = C(Fi(y1), F2(y2)).

If F1 and F5 are continuous, then C' is unique; otherwise, C' is uniquely determined on RanFi x RanFs.
Conversely, if C' is a copula and F; and Fy are distribution functions, then the function H defined
above is a joint distribution function with margins F} and Fb.
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Consider that the joint density probability function of the bivariate quantitative feature vector
yi = (Y15, y2i) is defined by:

(1) fyr,y2) = fi(y) f2(y2)e(Fr(v1), Fa(y2)),
where:
2
c(ul,uQ) = 8u?au2C(U1,UQ)

is called the copula density, f1(y1) e fa(y2) are the probability densities and Fj(y1) and Fy(y2) are the
cumulative distributions of of the one-dimensional variables.

Through the expression (1) we can see the flexibility of the Copula approach, because it separates
the choice of dependence from the choice of marginals distributions, on which no restrictions are
placed. Among the marginals distributions that could be used we can denote, for example, Normal,
Lognormal, Gamma and Inverse Gaussian. For the dependence structure it is possible to consider:
Clayton Copula, Gaussian Copula, Frank Copula, among others.

Following the GLM framework, the new approach is defined by two components (a random
component and a systematic component) to model interval-valued data. The random component
considers the bivariate random vector

Y]
Y B |; 1 ‘| ’
Y,
having having distribution given by (1). In the systematic component, the explanatory variables X1
and Xo; ( = 1,2,...,p) also represent the lower and upper boundaries or the midpoint and half-range

of the explanatory interval-valued variable X; and are responsible for the variability of Y7 and Y3,
respectively, and they are defined by

(2) n1 = g1(p1) = XuB1 and n2 = go(p2) = X202,

where X; and Xy are known model matrices formed by the observed values of the variables X
and Xoj, respectively, 31 and B2 are vectors of parameters to be estimated, 171 and 72 are the
linear predictors, p; and ps are the mean of the response variables Y7 and Y5, respectively, with
o= (my,-on,) w1 = (g, p11,)7 and B = (ﬁlo,...,ﬂlp)T. In the same way, we have

2= (M21s--- m2,) " 2 = (p2,, - p2,) " and Bz = (B2, - - ., B2,)". Here, g1(p1) and go(p2) are well-
known link functions that connect the mean of the response variables Y7 and Y5 with the explanatory

variables X1; and Xo; (j =1,...,p), respectively.
3. Determining the Terms of the Joint Distribution and the Parameter Estimation

To fit the regression model based on the copula’s theory it is necessary that the terms of the
joint density distribution is specified. First we work with the marginals distributions and then choose
the dependence structure. This is done using the measures of dependence Spearman and Kendall to
select some copulas that are suitable .

The procedure that we use to fit the regression model based on copula, consist of four steps.
First the parameters for the marginal models are estimated. In the second step, the copula parameters
are estimated with the marginal distribution parameters treated as given. This procedure is know as
the inference functions for margins method (IFM). Then we use this estimates as initial values for
apply maximum likelihood to jointly estimate the parameters for the marginal models and the copula.
Finally, we evaluate the fit of the copula with the estimated parameters by a test of goodness of fit
(Genest et al. 2009).
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To estimate the parameters of the bivariate model, we used the BFGS method which consists
of a nonlinear optimization method, derived from a variation of Newton’s method. The log-likelihood
function, whose parameters will be optimized can be written as:

Wyi,y2; 81, B2, p) = Y [log (f(y1i; 51)) + log (f (yai; 52))
i=1
(3) + log (e(F(y1i; 1), F(y2i; B2): p))]
where terms are as defined in section 2.

4. Application to Real Interval-Valued Data Set

In this section, the CIRM will be applied to a real interval-valued data set. This data set gives
the records of the weight (Y'), height (77) and age (T5) for 531 soccer players grouped in 20 teams of
the French Football Professional Championship. We use the new approach to predict the dependent
variable Y from the explanatory variables T; (j = 1,2). Table 1 gives the data which can be free
accessed in http://www.ceremade.dauphine.fr/~touati/foot2.htm.

Table 1: Soccer interval data set

Team Y T T Team Y Ty T
A [58-85] [164-192] [21-35] K [62-86] [164-191] [18-34]
B [67-84] [171-190] [20-30] L [62-80] [168-189] [19-35]
C [65-88] [170-186] [18-36] M [63-85] [167-190] [18-31]
D [60-83] [162-188] [19-31] N [65-95] [168-196] [20-35]
E [60-84] [170-189] [18-34] 0] [63-83] [170-187] [18-35]
F [67-83] [173-190] [18-36] P [60-87] [170-197] [18-37]
G [69-90] [176-193] [19-34] Q [67-85] [168-190] [18-32]
H [65-85] [170-193] [19-31] R [62-83] [169-192] [18-35]
I [63-84] [168-188] [18-34] S [63-84] [172-192] [18-33]
J [58-88] [167-197] [19-35] T [63-85] [169-194] [20-34]

For this interval-valued data set, we consider to the random component Y = [Y7, Y2] the lower
and the upper boundaries of the intervals [Y7,Yy] and the midpoint and the range on the intervals
[Y™ Y"]. As possible candidates for the univariate distributions we considered the Gaussian, the Log-
Normal and the Gamma distributions; the copulas Gaussian, Clayton, Husler-Reiss and Archimedean
(Frank and Clayton) and the link function identity. Based on root mean square error, the best
configuration for the CIRM considered the Gaussian distribution for the midpoints of intervals (Y™),
the Log-normal distribution for the ranges of intervals (Y and the Gaussian copula for the dependence
structure. Moreover, the Kendall (—0.11) and the Spearman (—0.16) coefficients are inside the unit
interval [—1,1].

Table 2: Final estimates to the midpoint explanatory variables

Parameter | Estimates
By -18.139
ekl 0.567
By -0.366

p.6484
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We consider as initial values to estimate the parameters of the copula interval regression model the
coefficients of a linear regression models for the midpoints and for the ranges of the intervals. Tables
2 and 3 present the final parameters estimate for the CIRM approach.

Table 3: Final estimates to the range explanatory variables

Parameter | Estimates
B 1.308
87 0.064
35 0.049

The goodness of fit (Genest et al., 2009) suggest that the Gaussian copula presented an satisfactory
fitted to the interval-valued data set (p-value = 0.502).

Table 4 suggest that the new approach outperforms the CM and CRM method in both measures
(RMSE;, and RMSEy). In the comparison with BSRM, the CIRM approach presented a better
performance for the lower bound and a very close performance in the uppper bound. However, a
simulated study is strongly recommended for a more consistent results about the CIRM approach.

Table 4: Comparison between the symbolic regression methods

Method RMSE;, RMSEy
CIRM 1.923 2.651
BSRM1 (Gamma) 2.232 2.570
BSRM1 (Normal) | 2.241 2.575
CM 7.540 7.681
CRM 1.946 2.661
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