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We consider a unified approach to investigation of plug-in pointwise estimators of the functions of
the multidimensional density functionals and the derivatives of the functionals, including the functions
of the conditional functionals and their derivatives, based on kernel estimators of the substitution
elements.

Let (Xt)t≥0 be a sequence of random variables satisfying the strong mixing (s.m.) condition with
the coefficient α(·) (notation: (Xt)t≥0 ∈ S(α)). Time series of such a kind is often used in modelling
economic, financial, physical, and technical processes (see, for example, [1,2]).

The problem of identification for the stochastic systems is often connected with estimating of
the functions of the following form:

(1) H(A) = H
(
{ai(x)}, {a(1j)

i (x)}, i = 1, s, j = 1,m
)

= H
(
a(x), a(1j)(x)

)
,

where x ∈ Rm, H(·): R(m+1)s → R1 is a given function, a(1j)(x) =
(
a

(1j)
1 (x), . . . , a(1j)

s (x)
)
, a(x) ≡

a(0j)(x) = (a1(x), . . . , as(x)) . Functionals ai(x) and their derivatives are defined as follows: ai(x) =∫
gi(y)f(x, y)dy, a

(1j)
i (x) =

∂ai(x)
∂xj

, i = 1, s, j = 1,m, where g1, . . . , gs are known functions,

f(·, ·) is an unknown density function of the observed random vector Z = (X, Y ) ∈ Rm+1, Y and

X = (X1, . . . , Xm) are the output and input variables respectively,
∫
≡
∫
R1

.

Since for gs(y) ≡ 1, we have as(x) =
∫

f(x, y)dy = p (x), where p (·) is the density function of

X, in the form (1) we can represent any function of the conditional functionals bi(x) = ai(x)/p (x) =∫
gi(y)f(y|x)dy and their derivatives b

(1j)
i (x) =

∂bi(x)
∂xj

, i = 1, s− 1.

Here are the well known examples of such functions:
— the conditional initial moments

µm(x) =
∫

ymf(y|x)dy, m ≥ 1, H(a1, a2) = a1/a2, g1(y) = ym, g2(y) = 1;

µ1(x) = r(x) is the regression line;
— the conditional central moments

Vm(x) =
∫

(y − r(x))mf(y|x)dy, g1(y) = y, g2(y) = y2, . . . , gm(y) = ym, gm+1(y) = 1;
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V2(x) is the conditional variance;
— the conditional coefficient of skewness

β1(x) =
E[(Y − r(x))|x]3

V2(x)3/2
, bi = ai/a1, gi(y) = yi−1, H(a1, a2, a3, a4) = (b4− 3b3b2 + 2b3

2)/(b3− b2
2)

3/2;

— the sensitivity functions

Tj(x) =
∂r(x)
∂xj

, g1(y) = 1, g2(y) = y, H
(
a1, a2, a

(1j)
1 , a

(1j)
2

)
=

a
(1j)
1

a2
− a1a

(1j)
2

a2
2

= b
(1j)
2 .

Other examples of using expressions of the form (1) can be found in [3].
As the estimators for the functionals a(0j)(x) ≡ a(x) and their derivatives a(1j)(x) at x we take

the kernel type statistics

a
(rj)
n0 (x) =

1
nhm+r

n

n∑
l=1

g(Yl)K(rj)
(

x−Xl

hn

)
, r = 0, 1,

where r = 0, 1, Zl = (Xl, Yl), l = 1, n, is (m + 1)-dimensional sample characterized by the density

f(·, ·), (Zj)j≥1 ∈ S(α); K(0j)(u) ≡ K(u) =
m∏

i=1

K(ui) is an m-dimensional product-form kernel;

K(1j)(u) =
∂K(u)
∂uj

= K(u1) · · ·K(uj−1)K(1)(uj)K(uj+1) · · ·K(um), K(1)(uj) =
dK(uj)

duj
; (hn) ↓ 0 is

the number sequence; g(y) = (g1(y), . . . , gs(y)) ; a
(rj)
n0 (x) =

(
a

(rj)
1n0 (x), . . . , a(rj)

sn0 (x)
)
, and a

(0j)
n0 (x) ≡

an0(x).
The recursive estimators are

a(rj)
n (x) =

1
n

n∑
i=1

g(Yi)
hm+r

i

K(rj)
(

x−Xi

hi

)
= a

(rj)
n−1(x)− 1

n

[
a

(rj)
n−1(x)− g(Yn)

hm+r
n

K(rj)
(

x−Xn

hn

)]
.

Recursive procedures have a number of advantages: as a rule, they are easily computer im-
plemented, they are memory-saving, provide a finished result at every step of the algorithm, newly
obtained measurements do not lead to cumbersome re-computations. Thus, real-time data processing
is possible.

The recursive kernel estimators were first proposed and studied in [4, 5] for a one-dimensional
density (m = 1, s = 1, g(y) = 1, and H(a1) = a1).

Kernel plug-in estimators for the conditional functionals b(x) = (b1(x), . . . , bs−1(x)) at x are of
the form

(2) bn0(x) =
n∑

i=1

g(Yi)K (x−Xi)

/
n∑

i=1

K (x−Xi) =
a

(0j)
n0 (x)

a
(0j)
sn0 (x)

.

and the semi-recursive estimators are

(3) bn(x) =
n∑

i=1

g(Yi)
hm

i

K
(

x−Xi

hi

)/ n∑
i=1

1
hm

i

K
(

x−Xi

hi

)
=

a
(0j)
n (x)

a
(0j)
sn (x)

, g(y) = (g1(y), . . . , gs−1(y)) .

For g1(y) = y, g2(y) = 1 (s = 2), m = 1 we obtain respectively the Nadaraya–Watson
kernel estimator [6, 7] for the one-dimensional regression function and the semi-recursive analog of
the estimator, which in the case of independent observations was considered in [8—10]. Estimators
of this type are said to be semi-recursive, since only the numerator and denominator are computed
recursively.
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Usual and semi-recursive (the functionals ai(x) and their derivatives are computed recursively)
plug-in estimators for (1) are of the form

(4) H(An0) = H
({

a
(rj)
n0 (x)

}
, j = 1,m, r = 0, 1

)
,H(An) = H

({
a(rj)

n (x)
}

, j = 1,m, r = 0, 1
)

.

Problems of instability of estimators (2)—(3) and, possibly, (4) (depending on the form of a
function H(·)) will be solved with the help of the piecewise smooth approximations (PWSA) H̃(An, δn)
of estimators (4) [11], similar to Tikhonov’s regularization procedure:

H̃(An, δn) =
H(An)

(1 + δn|H(An)| τ )ρ
,

where τ > 0, ρ > 0, ρτ ≥ 1, (δn) ↓ 0 as n →∞.

The PWSA 1) solves the problem of instability of the estimators related to a possible closeness
of the denominator to zero, for example, when alternating-sign kernels [12] are used for conditional
functionals’ estimation (the kernels improve the rate of mean square convergence); and 2) removes
obstacles to the main parts of asymptotic mean-square errors (MPAMSE) calculation.

Dependence of the observations makes analysis of properties of the estimators much more com-
plicated: for example, the MPAMSE of the Nadaraya–Watson estimator for s. m. sequences was
found only in 1999 [13]; in the same paper convergence of this estimator with probability 1 was also
proved.

We find the MPAMSE and the mean-square rate of convergence (improved by a choice of a
kernel) of estimators (4) and their PWSA to H(A).

The results for the semi-recursive estimators are given below. Let us introduce necessary defi-
nitions and notations.

Denote: sup
x

= sup
x∈Rm

, Tj =
∫

ujK(u)du, j = 1, 2, . . . .

Definition 1 is related to smoothness conditions for the estimated function H(·), and the next
two definitions are related to the estimation procedure.

Definition 1. A function H(·) : Rs → R1 belongs to the class Nν(t) (H(·) ∈ Nν(t)) if it and
all of its partial derivatives (up to the ν-th inclusive) are continuous at the point t ∈ Rs. A function
H(·) ∈ Nν(R) if these properties of H(·) are satisfied for all z ∈ Rs.

Definition 2. A Borel function K(·) ∈ A(r), if
∫
|K(r)(u)| du < ∞, and

∫
K(u) du = 1.

Definition 3. A Borel function K(·) ∈ A(r)
ν , if K(·) ∈ A(r), Tj = 0, j = 1, . . . , ν − 1, Tν 6= 0,∫

|uνK(u)|du < ∞, and K(u) = K(−u).

The parameter ν in Definition 3 determines the mean-square convergence rate for estimators
(4). For simplicity, we use the notation A(0) = A, and A(0)

ν = Aν .

Definition 4. A sequence (hn) ∈ H(λ), if
1
n

n∑
i=1

hλ
i = Sλhλ

n + o(hλ
n), where λ is a real number,

Sλ is a constant independent on n.

The condition in Definition 4 is related to the recursive structure of the estimators.
Let f1(i+1)(i+j+1)(i+j+k+1) be the density function of the sample variables (Z1, Zi+1, Zi+j+1, Zi+j+k+1) ,

a+
1(i+1)(i+j+1)(i+j+k+1),t(x, y, x′, y′) =

∫
R4
|gt(v)gt(s)gt(v′)gt(s′)|f1(i+1)(i+j+1)(i+j+k+1)(x, v, y, s, x′, v′, y′, s′)

dvdsdv′ds′, 1 ≤ i, j, k < n, i+j+k ≤ n−1; a
(2+δ)+
1(i+1), t(x, x′) =

∫
R2
|gt(v)gt(s)|2+δf1(1+j)(x, v, s, x′)dvds;

a
(2+δ)+
1(1+j)(1+j+k), t(x, y, x′) =

∫
R3
|gt(v)gt(s)gt(v′)|2+δf1(1+j)(1+j+k)(x, v, y, s, x′, v′)dvdsdv′.

Introduce also the following notation r = 0, 1, j = 1,m i = 1, s :
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A = A(x) =
{
a(rj)(x)

}
; Htjr = ∂H(A)/∂a

(rj)
t ; H

({
a

(rj)
n (x)

})
= H(An);

as+(x) =
∫
|gs(y)|f(x, y)dy; at, p(x) =

∫
gt (y)gp (y) f(x, y) dy; a1+

t, p(x) =
∫
|gt (y)gp (y)| f(x, y) dy;

L(r, q) =
∫

K(r)(u)K(q)(u) du; B(r, q)
t, p = L(r, q)

(
L(0, 0)

)m−1
at, p (x); ω

(rj)
iν (x) =

Tν

ν!

m∑
l=1

∂ νa
(rj)
i (x)
∂xν

l

;

the set Q =


{0}, ∀j r = 0,

{1}, ∀j r = 1,

{0, 1}, ∃j r = 0
∧

r = 1;
max(r) = max

r∈Q
(r); dn =

[
1

nh
m+2 max(r)
n

+ h2ν
n

]−1

.

Theorem 2 (MSE of the estimator H(An)). Assume that for t, p = 1, s, j = 1,m and r ∈ Q :

1) (Zi)i≥1 ∈ S(α), and
∫ ∞

0
τ2[α(τ)]

δ
2+δ dτ < ∞, for some 0 < δ < 2;

2) at, p (·) ∈ N 0(R), a
(2+δ)+
t (·) ∈ N0(x); sup

x
a+

t, p (x) < ∞, sup
x

aβ+
t (x) < ∞, β = 0, 4;

3) K(·) ∈ A(r)
ν , sup

u∈R1

|K (r)(u)| < ∞; and if 1 ∈ Q, then lim
|u|→∞

K(u) = 0, for m > 1

sup
u∈R1

|K(u)| < ∞; 4) a
(rj)
t (·) ∈ N ν(R), sup

x
| a (rj)

t (x)| < ∞; sup
x

∣∣∣∣∣∂ νa
(rj)
t (x)

∂xl . . . ∂xq

∣∣∣∣∣ < ∞, l, . . . , q = 1,m;

5) A monotone nonincreasing sequence (hn) ∈ H(ν),
(hn) ∈ H(−m− 2k) for integers 0 ≤ k ≤ max(r), 1/(nhm+2k

n ) ↓ 0; if Q = {1}, then k = 1;
6) sup

x
a1(i+1)(i+j+1)(i+j+k+1), t(x, x, x, x) < ∞, sup

x
a

(2+δ)+
1(i+1)(i+j+1), t(x, x, x) < ∞,

sup
x

a
(2+δ)+
1(i+1), t(x, x) < ∞, sup

x, y
a+

1(i+1), tp(x, y) < ∞ for any i, j, k ≥ 1; 7) H(·) ∈ N 2(A);

8) For any values of the sample Z1, . . . , Zn the sequence {|H(An)|} is majorized by a number
sequence (C0d

γ
n) , (dn) ↑ ∞, C0 being a constant, 0 ≤ γ ≤ 1/4.

Then

u2 (H(An)) =
∑

t,p,r,q,j,k

Htj rHp kq

S−(m+r+q))

B (r, q)
t, p (x)

nhm+r+q
n

+ S2
νω

(rj)
t ν (x)ω (q k)

p ν (x)h2ν
n

+ O
(
d−3/2

n

)
.

Theorem 3 (MSE of the estimator H̃(An, δn)). Assume that the conditions of Theorem 3 are
fulfilled, with condition (8) replaced by the condition 8∗) H(A) 6= 0 τ = 4, 6, . . .

Then as n →∞
u2
(
H̃(An, δn)

)
∼ u2 (H(An)) .

The proof of Theorem 2 is given in [14], based on the results of paper [11]. Theorem 3 follows
from [11, Corollary 4] with k = 2 and m = 4.

Below the results are applied to estimation of the dynamic production function and its charac-
teristics.

Suppose that a sequence (Yt)t=...,−1,0,1,2,... is generated by a nonlinear homoscedastic ARX pro-
cess of order (m, s)

(5) Yt = Ψ(Yt−i1 , . . . , Yt−im , Xt) + ξt = Ψ(Ut) + ξt,

where Xt = (X1t, . . . , Xst) are exogenous variables, Ut = (Yt−i1 , . . . , Yt−im , Xt), 1 ≤ i1 < i2 <

... < im is the known subsequence of natural numbers, (ξt) is a sequence of independent identically
distributed (with density positive on R1) random variables with zero mean, finite variance, zero third,
and finite fourth moments, Ψ(·) is an unknown nonperiodic function bounded on compacts. Assume
that the process is strictly stationary. Criteria for geometric ergodicity of a nonlinear heteroscedastic
autoregression and ARX models which in turn imply α-mixing have been given by many authors (see,
for example, [15]– [19]).
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Let Y1, . . . , Yn be observations generated by the process (5). The conditional expectation
Ψ(x, z) = Ψ(u) = E(Yt|Ut = u), (x, z) = u ∈ Rm+s we estimate by the statistic:

(6) Ψn, m+s (u) =
n∑

t=im+1

Yt

hm+s
t

K
(

u− Ut

ht

)/ n∑
t=im+1

1
hm+s

t

K
(

u− Ut

ht

)
.

This quantity may be interpreted as the predicted value based on the past information.
We proved that if the observed sequence satisfies the s. m. condition with s. m. coefficient

α(·) such that
∫ ∞

0
τ2[α(τ)]

δ
2+δ dτ < ∞ for some 0 < δ < 2, then Theorems 2–3 hold. Note that s. m.

coefficient with the geometric rate satisfies this condition.
We apply (6) under Ut = (Yt−1, X1(t−1), X2(t−1), X3(t−1)) to investigate the dependence of Rus-

sian Federation’s Industrial Production Index Y on the dollar exchange rate X1, direct investment
X2, and export X3 for the period from September 1994 till March 2004. The data are available from:
http://www.gks.ru/, and http://sophist.hse.ru/. The estimate

Ψn, 4 (Yn−1, X1(n−1), X2(n−1), X3(n−1)) =
n−1∑
t=2

Kt

Ht
YtK

(
Yn−1 − Yt−1

h1t

)/n−1∑
t=2

Kt

Ht
K

(
Yn−1 − Yt−1

h1t

)
,

where Ht =
4∏

j=1

hjt, Kt =
3∏

j=1

K

(
Xj(n−1) −Xj(t−1)

h(j+1)t

)
.

To find the AMSE of the estimate Ψn, 4 (u) we use Theorem 2.
Let f(·, ·) be the stationary distribution of the vector (Ut, Yt). Suppose that K(·) ∈ A ν ,

K(u) =
4∏

i=1
K(ui), sup

u∈R1

|K(u)| < ∞, the sequence (hn) ∈ H(4), and 1/(nh4
n) ↓ 0. Let functions

ai(u), i = 0, 1, and their derivatives up to and including the order ν be continuous and bounded on

R 4; functions
∫

y2f(u, y) dy and
∫

y4f(u, y) dy be bounded on R 4; and, moreover,
∫

y2f(u, y) dy and∫
|y|2+δf(u, y) dy be continuous at the point u. Then conditions (1)–(5) of Theorem 2 hold; we also

suppose that condition (6) holds. If p (u) > 0, then condition (7) holds too.
If the random variables Yt are uniformly bounded, and we select a nonnegative kernel, then it is

easy to show that Ψn, 4 (u) are bounded for ν = 2. By condition (8) this is equivalent to the existence
of a majorizing sequence with γ = 0. For ν > 2 the PWSA solves the problem.

In Table 1 the relative errors of the forecast (REF) obtained with Ψn, 4 (·) for each year from
1995 till 2004 are given.

The result of 1998 can be explained by Russian financial crisis (”Ruble crisis”) in August 1998.
The kernel used is the Gaussian kernel and the bandwidths hjt = 0.17σ̂jt

−1/8, where σ̂j , j = 1, 2, 3, 4
are the corresponding sample mean square deviations, the constant 0.17 is chosen subjectively.

The marginal productivity function and marginal rate of technical substitution are estimated in
the same way.
TABLE 1. Errors of Forecasts

1995 1996 1997 1998 1999
0.189 0.057 0.04 0.133 0.05

2000 2001 2002 2003 2004
0.055 0.047 0.042 0.057 0.043
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