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Abstract

Owing to aging, how to sufficiently use the limited resources becomes controversial.

Knowing how to estimate medical cost accurately and efficiently becomes an important

issue. However, it is common to have dropouts when analyzing medical cost. The

näıve estimators ignoring the unobservable data may be biased. Lin et al. (1997)

suggested partitioning the study duration and estimating the cost of each interval and

then constructing the estimate by summing up the cost from each interval. Furthermore,

to take into account of the unobservable data, Lin et al. (1997) and Band and Tsiatis

(2000) proposed weighted estimators that used the survival probability and uncensored

probability as the weight, respectively.

Furthermore, the medical cost may be related to many covariates. Baser et al.

(2006) suggested using the general linear model for the longitudinal data to model the

partitioned cost, where a random intercept is included. This paper extends the model

to a more general parametric model. Furthermore, similar to the weighting concept in

Lin et al. (1997), we suggest using the survival probability as the weight adjustment

which is estimated by the Cox proportional hazards model. Simulations are used to

evaluate the performance of the unadjusted and adjusted cost estimators under various

scenarios. Finally, the proposed model is implemented on the data extracted from

Health Insurance database for patients with the colorectal cancer.
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1 Introduction

Studying the cost of health care has been a heightened interest recently. One important issue

of this is to find a more cost-effective assessment for treating a disease or develop a more

standardized and efficient medical intervention. The data for such analysis are available from

clinical trials, disease registries, health insurance records, etc. A common characteristic of

such data is that some patients may not be followed completely to the end of the event of

interest. Assuming the lifetime cost is of interest, then the time to the end of death, i.e. the

lifetime, may be censored and the lifetime cost is also censored. As a result, the mean cost

is often estimated using the average total cost from all available data, even though some of

these data may be censored and some of these data may be completely observed. This may

lead to erroneous inference.

A fundamental difference between censored survival time and censored lifetime cost exists

as pointed out in Lin et al. (1997). Patients may accumulate the lifetime cost differently. A

patient who accrues costs at higher rates tends to generate larger total costs at the end of

the event, which means the total cost at the end of the event may be positively correlated

with the total cost at the end of the censored event. This means that the censored total cost

cannot be estimated based on the standard survival methodologies which often assume the

independence between the survival time and the censoring time.

The early investigation of statistical models for analyzing the total cost only focuses

primarily on the estimation of total cost without adjusting the covariates. To take into

account of censoring cost, Lin et al. (1997) suggested partitioning the entire observing period

into several fixed intervals and then estimating the average cost by the survival probability

in each time interval multiplied by the sample mean of the total costs from that interval,

whereas Bang and Tsiatis (2000) proposed using the inverse probability weighted methods

to adjust the censored cost. Recently, the investigation for analyzing the total cost uses the

parametric models such as the regression (Lin et al., 2000) and the mixed model (Baser et

al., 2006) to incorporate the important covarates.

In this paper, we discuss various unadjusted cost estimates in Section 2. Section 3 extends

the model proposed by Baser et al. (2006) and incorporates the survival probability computed

from the proportional hazards model as the inverse probability weight to find the adjusted

cost estimator. Section 4 evaluates the performance of various unadjusted cost estimators

and adjusted cost estimators using Monte Carlo simulation. Section 5 illustrates the usage
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of these estimators using a real data obtained from National Health Insurance Research

Database. Discussions are given in Section 6.

2 Unadjusted total cost estimation

Let Xi and Ci denote the survival time and censoring time of the ith patient and be assumed

to be independent. Also, let Ti = min(Xi, Ci) and δi = I[Xi ≤ Ci], where I[A] denotes the

indicator of the event A. Assume the research duration be [0, τ), where τ is a pre-specified

constant. Let the duration be partitioned into K intervals, where the kth interval is denoted

as [ak, ak+1) and a1 = 0, aK+1 = τ . Let Yik denote the true accumulative cost for the kth

interval for the ith subject and Ỹik denote the observed accumulative cost for the kth interval

for the ith subject Then the true total cost for the ith patient becomes

Yi =
K∑

k=1

Yik.

Owing to censoring, some Ỹik may be incomplete observed. Lin et al. (1997) used the

following ways to record the cost for the given interval:

1. For δi = 1 or Ti = τ , then Ỹik = Yik and the accumulative cost for the i subject is

Yi =
∑Ki

k=1 Yik, where Ti ∈ [aKi
, Ti) .

2. When Ti < τ and Ti falls in [aKi
, aKi+1), then

(a) the accumulative cost for Ki intervals equals
∑Ki−1

k=1 Yik.

(b) the cost for the Ki interval equals the cost ỸiKi
accumulated in [aKi

, Ti].

(c) and The cost beyond the Ki interval equals 0, when δi = 1 and equals missing

when δi = 0.

Based on the preceding recording for the cost, a subject who is censored owing to the length

of research would have a complete cost history. Thus, we need another indictor for those

subject, which is denoted as ηi = I[Ti = τ ]. A hypothetical data listed in table 1 is used to

demonstrate the preceding assumption.

Using the conditional expectation properties, Lin et al. (1997) proposed some cost esti-

mators that are based on either uncensored samples or complete samples. Bang and Tsiatis

(2000) suggested using the inverse probability weighted method to adjust the censored cost

to derive a cost estimator. Section 2.1 reviews estimators proposed by Lin et al. (1997), while

Section 4 describes estimates proposed by Bang and Tsiatis (2000). Their performances will

be illustrated using Monte Carlo simulation in Section 4.
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Table 1: Cost construction of (Ỹik, ηi) for hypothetical cost data and survival time

Partitions

Individuals
1 2 3 4 5 6 7

Yi Ti δi ηi
[0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,7)

1 7 . . . . . . 7 0.5 0 0

2 13 8 9 14 5 0 0 49 4.3 1 1

3 12 7 10 8 7 8 9 61 7 0 1

4 13 9 11 13 0 0 0 46 3.8 1 1

5 10 8 7 8 6 9 0 48 6 0 0

6 25 30 19 0 0 0 0 74 2.2 1 1

2.1 Unadjusted estimates by the conditional expectation

Let µ and µk denote the population average total cost and the population average total cost

for the kth interval. Then, based on the conditional expectation property, we have

µ =
K∑

k=1

µk =
K∑

k=1

E[Yik|T ≥ ak]P [T ≥ ak] +
K∑

k=1

E[Yik|T < ak]P [T < ak] =
K∑

k=1

SkEk, (1)

where Sk = P [T ≥ ak] and Ek = E[Yik|T ≥ ak]. Owing the censoring, Ek can be estimated

based on the full sample or the uncensored sample.

When the full sample is used, the estimate of Ek uses all available data in the kth interval.

Let ηFH
ik = I[Ti ≥ ak]. Then, an estimate of Ek can be obtained as

ÊFH
k =

∑n
i=1 η

FH
ik Ỹik∑n

i=1 η
FH
ik

, k = 1, . . . , K.

When the uncensored sample is used, only the complete data in the kth interval is used to

compute the estimate of Ek. Let ηUH
ik = I[Ti ≥ ak, Ci ≥ min(Xi, ak+1)], where ηUH

iK = 1 if

Ti = τ . The estimate becomes

ÊUH
k =

∑n
i=1 η

UH
ik Ỹik∑n

i=1 η
UH
ik

, k = 1, . . . , K.

Table 2 illustrates how to compute the estimates of ÊFH
k and ÊUH

k . Obviously, ÊFH
k would be

smaller than ÊUH
k when there are censored observations in the kth interval, while when no

censored observations are found, we have ÊFH
k =ÊUH

k

By again the conditional expectation property, (1) can be re-expressed as

µ =
K+1∑
k=1

E[Yi|ak ≤ T < ak+1]P [ak ≤ T < ak+1] =
K+1∑
k=1

(Sk − Sk+1)Ak, (2)
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Table 2: Estimates of Ỹik, ÊFH
k and ÊUH

k using hypothetical data in Table 1

Partitions

Individuals
1 2 3 4 5 6 7

Yi Ti δi ηi
[0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,7)

1 7 . . . . . . 7 0.5 0 0

2 13 8 9 14 5 0 0 49 4.3 1 1

3 12 7 10 8 7 8 9 61 7 0 1

4 13 9 11 13 0 0 0 46 3.8 1 1

5 10 8 7 8 6 9 0 48 6 0 0

6 25 30 19 0 0 0 0 74 2.2 1 1∑6
i=1 η

FH
ik 6 5 5 4 3 2 2

ÊFH
k 15 12.4 11.2 10.75 6 17 4.5∑n

i=1 η
UH
ik 5 5 5 4 3 2 1

ÊUH
k 14.6 12.4 11.2 10.75 6 17 9

where Ak = E[Yi|ak ≤ T < ak+1] and aK+2 =∞. Let ηT
ik = I[ak ≤ Ti < ak+1], where ηT

iK = 1

if Ti = τ . Using all possible sample in the interval, an estimate of Ak can be

Âk =

∑n
i=1 η

T
ikỸi∑n

i=1 η
T
ik

, k = 1, . . . , K.

Table 3 illustrates how to compute the estimates of ÂT
k . Furthermore, the survival Sk in (1)

and (2) can be estimated by the Kaplan-Meier estimator (Kaplan and Meier, 1958) which

is denoted as Ŝk. Based on replacing ÊFH
k , ÊUH

k and Âk and Sk in (1) and (2), we can

obtain three estimates of cost and be denoted as µ̂FH, µ̂UH, µ̂T, respectively. The asymptotic

properties of µ̂FH, µ̂UH, µ̂T are discussed in Lin et al. (1997).

2.2 Unadjusted estimators by IPWM

Cost estimators that are based on the conditional expectation properties do not consider the

censored cost. To take into account of censored cost, Bang and Tsiatis (2000) proposed using

inverse probability weighted method (IPWM) to adjust for the censored cost. The detail

of IPWM is referred to Carpenter and Kenward (2005). Let p(t) = P [Ci ≥ t] denote the

uncensored probability at time t, which can be estimated again by Kaplan-Meier estimator.

Let this estimator be denoted as p̂(t). To avoid computational complexity, we use the con-

ventional means to define p̂(t) at the last observation, that is, the last observation is treated

as a censored case regardless the actual status is.
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Table 3: Estimates of Ỹik, ÊT
k using hypothetical data in Table 1

Partitions

Individuals
1 2 3 4 5 6 7

Yi Ti δi ηi
[0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,7)

1 7 . . . . . . 7 0.5 0 0

2 13 8 9 14 5 0 0 49 4.3 1 1

3 12 7 10 8 7 8 9 61 7 0 1

4 13 9 11 13 0 0 0 46 3.8 1 1

5 10 8 7 8 6 9 0 48 6 0 0

6 25 30 19 0 0 0 0 74 2.2 1 1∑n
i=1 η

T
ik 0 0 1 1 1 0 1

Âk 0 0 74 46 49 0 61

Since

E

[
δi

p(Ti)

]
= E

{
E

[
δi

p(Ti)

]
|Ti

}
= 1, (3)

a weighted estimator using only uncensored observation can be given by

µ̂BT =
1

n

n∑
i=1

ηiỸi

p̂(Ti)
(4)

The estimator defined in (3) uses only the total cost and all the cost history are not included.

Adapted the partition idea by Lin et al. (1997), Bang and Tsiatis (2000) then proposed a

partitioned weighted estimator defined as

µ̂BTP =
1

n

n∑
i=1

K∑
k=1

ηBTP
ik Ỹik

p̂(Tik)
,

where ηBTP
ik = I[Ci ≥ Tik], Tik = min(Ti, ak+1) and ηBTP

iK = 1 if Ti = τ . The asymptotic

properties of µ̂BT and µ̂BTP are discussed in Bang and Tsiatis (2000).

3 Adjusted cost estimations

The medical cost often varies dramatically with the disease severity, the type of treatment

and the level of ward, etc. Thus, the model-based estimator should be considered. However,

owing to censoring, some costs are not observable. Furthermore, when the cost history is
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considered, there may exist correlation among cost history. Some adjustments in the ordinary

regression model are needed.

To simplify the notation, let

Y i =


Yi1

Yi2
...
YiK

 ,

and let the covariates for the i subject be denoted as

Zi =


Zi1

Zi2
...
ZiK

 =


1 Zi11 Zi12 · · · Zi1,p−1

1 Zi21 Zi22 · · · Zi1,p−1
...

...
...

. . .
...

1 ZiK1 ZiK2 · · · ZiK,p−1

 ,

where Zij is the covariate observed at the jth interval. Define the linear model for the

repeated measurements as

Yik = β0 + β1Zik,1 + . . .+ βp−1Zik,p−1 + εik, i = 1, . . . , n, j = 1, . . . , K (5)

or Y i = Ziβ+ εi, i = 1, . . . , n, where β
′
= (β0, β1, . . . , βp−1) and ε

′
i = (εi1, εi2, . . . , εiK) is the

measurement error. The distribution of εi are assumed to be multivariate normal with mean

0 and variance-covariance matrix Σi.

The maximum likelihood estimation can be used to estimate (β,Σi) and let the estimates

be denoted as

β̂ =

(
n∑

i=1

Z
′

iΣ̂
−1

i Zi

)−1( n∑
i=1

Z
′

iΣ̂
−1

i Y i

)
(6)

and Σ̂i. The asymptotic distribution of β̂ is the mutlivariate normal with mean β and

variance-covariance matrix

Cov(β̂) = A−1BA−1, (7)

where A =
∑n

i=1Z
′

iΣ
−1
i Zi, B =

∑n
i=1Z

′

iΣ
−1
i ûiû

′

iΣ
−1
i Zi, ûi = Y i −Ziβ.

When Σi is completely unspecified and the number of partitions increases, the number

of parameters in Σi increases dramatically. Since there may exist certain association char-

acteristics for the repeated measures, Σi is often characterized into a specified parametric

structures such as the compound symmetry structure, first-order autoregressive structure,

Toeplitz structure, etc (see Fitzmaurice, Laird and Ware, 2004). An appropriate structure

can be determined by the likelihood ratio statistics or Akaike information criterion.

Model (5) is no longer appropriate when data are unbalanced. The mixed model that

includes the fixed effect and random effect, can be then used. Define the mixed model as

Y i = Ziβ +Diui + ei, i = 1, . . . , n, (8)
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where Di is the design matrix for random effects, which is a subset of Zi, and ui is the

vector for random effects. Under model (8), ui is assumed to have a multivariate normal

distribution with mean 0 and variance-covariance matrix G and be independent of ei and

ei a multivariate normal distribution with mean 0 and variance-covariance matrix Ri. In

practice, owing to limited data, Ri is assumed to be a diagonal matrix. Using transformation,

we can obtain Σi = ZiGZ
′

i +Ri. The maximum likelihood estimation can be again used to

estimate β and Σi.

Baser et al. (2006) suggested using the random intercept model to estimate the effects of

treatment on the total medical cost which is weighted by IPWM. The following extends the

random intercept model to a more general settings. Two situations are included:

1. The censoring bias is not adjusted.

2. The censoring bias is adjusted using IPWM.

3.1 Scenario I

Owing to censoring, some cost data are unobservable. To estimate the effects of treatment

on the total medical cost, we modify the design matrix Zi as Z̃i = SiZi, which is the design

matrix for the observable cost, where Si is a K × K diagonal matrix and the kth diagonal

element equals 1 when the cost for the kth interval for the ith subject is observable and 0

otherwise. Based on only observable data, the model defined in (5) becomes

Ỹ i = Z̃iβ + ẽi, i = 1, . . . , n, (9)

where ẽi has a multivariate normal distribution with mean 0 and variance-covariance matrix

Σi. An important assumption is needed when using this model. That is, we need to assume

that censoring is not associated with the total cost.

Using the maximum likelihood estimation, we can obtain the maximum likelihood esti-

mator of β as

β̂I =

(
n∑

i=1

Z̃
′

iΣ
−1
i Z̃i

)−1( n∑
i=1

Z̃
′

iΣ
−1
i Ỹ i

)
(10)

and Σ̂
−1

i . The asymptotic distribution of β̂I is multivariate normal with mean β and the

asymptotic variance covariance matrix Cov(β̂I) = Â
−1

I B̂IÂ
−1

I , where ÂI =
(∑n

i=1 Z̃
′

iΣ
−1
i Z̃i

)
,

B̂I =
∑n

i=1 Z̃
′

iΣ
−1
i

ˆ̃ei
ˆ̃e

′
iΣ

−1
i Z̃i, ˆ̃ei = Ỹ i − Z̃iβI .

3.2 Scenario II

The estimator defined in (10) is derived based on only the observable data. To avoid such

assumption, we use the IPWM to adjust the missing cost. Let P i denote the uncensored
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probability for the ith subject, where the kth diagonal element is
√
pik and pik is the uncen-

sored probability for the kth interval for the ith subject. Based on IPWM, the design matrix

and cost are modified as Z̃
P

i =P−1
i Z̃i, Ỹ

P

i = P−1
i Ỹ i and the corresponding model becomes

Ỹ
P

i = Z̃
P

i β + ẽP
i , i = 1, . . . , n. (11)

The estimator of β can be obtained using the maximum likelihood method as

β̂II =

(
n∑

i=1

Z̃
P

′

i Σ−1
i Z̃

P

i

)−1( n∑
i=1

Z̃
P

′

i Σ−1
i Ỹ

P

i

)
.

The corresponding asymptotic variance-covariance matrix is Cov(β̂II) = Â
−1

II B̂IIÂ
−1

II , where

ÂII =

(∑n
i=1 Z̃

P
′

i Σ−1
i Z̃

P

i

)
, B̂II =

∑n
i=1 Z̃

P
′

i Σ−1
i

ˆ̃eP
i

ˆ̃eP
′

i Σ−1
i Z

P
i , ˆ̃eP

i = Ỹ
P

i − Z̃
P

i β̂II .

4 Simulation

The performance of the unadjusted cost estimators and adjusted cost estimators is evaluated

using Monte Carlo simulations. Simulated data include two parts of information, one is the

information for the survival information and the other one is the information about the cost.

The simulation scheme is a modification of Lin et al. (2000). The survival times is

generated from either the exponential distribution with mean c = 6 years or the uniform

distribution (0,10) years, while the censoring time is generated from the uniform distribution

on (0, c) years, where c is determined according to the probability of censoring. We consider

three censoring situations, 30%, 40% and 50%. Under the exponential survival, c equals 20,

12.5 and 10, while under the uniform survival, c equals 17, 12.5 and 10. The simulation

setting for cost is described separately for the unadjusted and adjusted estimators as follows.

The performance of each estimator is evaluated based on the bias, the standard error

of estimator (SSE), the mean of standard error of estimator (SEE) and the 95% coverage

probability (CP), which are computed from 10,000 simulated samples.

4.1 Performance of unadjusted cost estimations

The total cost includes three types of cost, the baseline cost, the diagnostic cost and the cost

in the final year of life (cost of mortality). We assume the total duration τ equals 10 years and

the costs are observed each year, that is, K = 10. Within each year, there is a baseline cost

of uniform (100,300). Additionally, there is a diagnostic cost of uniform (500,1500) at t = 0

and a cost of final year of life of uniform (1000,3000). Based on the preceding setting, for

the uniform survival, the total cost µ equals $39, 000, whereas for the exponential survival,

the total cost µ equals $34, 380. Finally, the sample size is assumed to be 100, 250 and 500.
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Tables 4 and 5 summary the results of simulation studies on the unadjusted estimates

discussed in Section 2. The bias tends to be larger when using the conditional properties to

construct the estimators. In particular, owing to the construction, µ̂FH using only the full

sample the tends to underestimate the total cost, while µ̂UH using only uncensored sample

tends to overestimate the total cost. On the other hand, the results of simulation also

demonstrates that the performance of µ̂T and µ̂BT is similar. µ̂BTP has the smallest bias

among most of simulated situations. The environmental settings can influence the bias. As n

increases, the bias becomes smaller, except for µ̂UH. The impact of n is especially strong on

µ̂T, µ̂BT and µ̂BTP. On the other hand, the percent of censoring has negative impact on the

bias. The more the censoring observations, the larger the bias. In particular, as compared to

other estimates, µ̂BTP has the least impact. Since µ̂T and µ̂BT use only one weight for each

subject, these estimates have large bias as the percent of censoring increases. Furthermore,

the bias of µ̂BTP is robust with respect to the distribution of survival times, while the bias

of the other estimates is not. Since µ̂UH uses the uncensored sample and µ̂T and µ̂BT use

only one weight for each subject, when the distribution of survival is right-skewed, the bias

becomes extremely large. The influence of distribution is even more evident when the percent

of censoring increases.

The performance in terms of SSE and SEE is similar for five estimates. As expected, SSE

and SEE decrease as the sample size increases, while increasing the censoring probability

enlarges SSE and SEE. The performance in SSE and SEE is very robust with respect to

the distribution. However, when the censoring probability is more than 40%, SSE and SEE

increase dramatically.

The performance in terms of CP for µ̂T, µ̂BT and µ̂BTP is good when the censoring

probability is less than 50%, while CP can become lower than 70% when the censoring

probability equals 50%. In particular, when the survival distribution is right-skewed, CP for

µ̂T and µ̂BT can be lower than 30%. Furthermore, increasing the sample size increases CP,

except when the probability of censoring is more than 40%. Surprisingly, CP of µ̂FH and

µ̂UH is influenced differently by the sample size and distribution. To be more specifically,

increasing the sample size deduces CP, while CP is larger for µ̂FH and µ̂UH when the survival

distribution is skewed.

4.2 Performance of adjusted cost estimations

To evaluate the adjusted cost estimators, besides the earlier setting, a random intercept is

added to characterize the subject heterogeneity. We assume the random intercept has a

uniform distribution on (0, c), where c is determined by the intraclass correlation coefficient

(ICC). The ICC is defined as ICC = σ2
u/(σ

2
e + σ2

u), where σ2
u is the variance of the random
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Table 4: Performance of unadjusted cost estimator under the uniform survival

P [C ≤ X] c n µ̂FH µ̂UH µ̂T µ̂BT µ̂BTP

30% 17 100 Bias -1179 505 -61 -40 -16
SSE 1143 1181 1193 1192 1153
SEE 1102 1134 1144 1018 1044
CP∗ 80.3% 91.3% 93.8% 90.3% 92.1%

250 Bias -1173 510 -27 -4 0
SSE 723 741 739 739 726
SEE 709 730 733 647 654
CP 61.7% 88.9% 94.4% 91.1% 91.9%

500 Bias -1184 501 -34 -10 -8
SSE 504 521 518 518 508
SEE 504 520 520 458 461
CP 35.3% 83.9% 95.0% 91.8% 92.3%

40% 12.5 100 Bias -1990 800 -286 -255 -121
SSE 1284 1359 1553 1554 1313
SEE 1201 1250 1256 1043 1061
CP 61.5% 88.4% 90.3% 83.8% 88.5%

250 Bias -1980 852 -108 -69 -34
SSE 795 826 857 858 798
SEE 774 807 805 653 658
CP 28.2% 81.4% 93.4% 87.1% 89.3%

500 Bias -1971 865 -56 -16 -7
SSE 552 576 573 575 549
SEE 550 576 569 459 462
CP 5.2% 68.2% 94.4% 88.5% 90.1%

50% 10 100 Bias -3866 497 -2831 -2793 -1224
SSE 1758 2042 3598 3600 1957
SEE 1425 1508 1781 1386 1058
CP 28.2% 83.7% 60.7% 51.3% 62.8%

250 Bias -3716 1118 -1802 -1750 -765
SSE 1099 1325 2289 2298 1267
SEE 961 1015 1209 920 650
CP 5.2% 73.4% 64.9% 53.7% 62.0%

500 Bias -3687 1435 -1279 -1221 -531
SSE 750 903 1644 1652 918
SEE 711 736 895 670 457
CP 0.1% 47.7% 66.7% 54.5% 60.8%

∗ CP is the coverage probability of the 95% confidence interval
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Table 5: Performance of unadjusted cost estimator under the exponential survival

P [C ≤ X] c n µ̂FH µ̂UH µ̂T µ̂BT µ̂BTP

30% 20 100 Bias -762 358 -37 -18 -17
SSE 1114 1175 1156 1156 1141
SEE 1098 1154 1107 1124 892
CP 88.1% 93.5% 93.5% 93.9% 87.0%

250 Bias -753 372 -27 -6 -5
SSE 697 736 723 723 716
SEE 697 733 717 712 597
CP 80.5% 92.3% 94.5% 94.4% 89.6%

500 Bias -745 379 -18 3 2
SSE 495 521 514 514 507
SEE 493 519 511 504 429
CP 66.6% 89.1% 94.7% 94.4% 90.1%

40% 14.1 100 Bias -1239 634 -50 -23 -24
SSE 1198 1339 1297 1296 1261
SEE 1184 1306 1197 1296 955
CP 79.4% 92.5% 92.2% 93.8% 85.9%

250 Bias -1227 640 -43 -13 -13
SSE 760 846 821 821 800
SEE 751 832 791 820 608
CP 61.2% 88.6% 93.9% 94.9% 86.3%

500 Bias -1220 649 -41 -10 -7
SSE 534 594 579 578 561
SEE 532 590 567 579 431
CP 38.2% 81.4% 94.7% 95.1% 86.8%

50% 9.6 100 Bias -2716 874 -6494 -6452 -764
SSE 1598 2607 4283 4287 1989
SEE 1363 1598 2522 1776 939
CP 45.2% 75.8% 30.3% 20.1% 59.1%

250 Bias -2676 1676 -6179 -6130 -587
SSE 996 2461 3099 3107 1429
SEE 919 1115 1975 1309 605
CP 21.9% 64.9% 18.9% 11.5% 53.6%

500 Bias -2658 2686 -6008 -5956 -505
SSE 694 2538 2405 2409 1119
SEE 668 808 1617 1042 432
CP 6.2% 45.3% 11.9% 7.9% 49.3%

∗ CP is the coverage probability of the 95% confidence interval
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intercept and σ2
e is the variance of the measurement error. Three different ICC values are

considered as 0.2, 0.5 and 0.7. The total cost is also classified into three types, the baseline

cost, the diagnostic cost and mortality cost. All of these costs are generated from uniform

(0,1). Based on the mean response curve, there is a sudden drop at the second year. Thus,

the piecewise linear model defined as

Yik = β0 + β1Zi + β2tik + β3(tik − 2)+ + ui + eik,

where Zi is a dummy variable for the treatment. There is no treatment effect in the simulated

data and thus the true value for β1 is 1.

Table 6 and 7 list the result for simulations. Adjusted estimates are estimated from four

models:

Model I Σi is a diagonal matrix and no adjustment for the censoring bias. The estimate of

β1 is denoted as β̂I .

Model II Σi is a diagonal matrix and IPWM adjustment is applied for the censoring bias.

The estimate of β1 is denoted as β̂II .

Model III Dependence is considered and no adjustment for the censoring bias. The estimate

of β1 is denoted as β̂III .

Model IV Dependence is considered and IPWM adjustment is applied for the censoring

bias. The estimate of β1 is denoted as β̂IV .

The bias for these estimates should be similar. The performance of these estimates should

be compared in terms of SSE, SEE and CP. As expected, SSE and SEE for β̂III and β̂IV are

smaller than β̂I and β̂II . The difference in SSE and SEE between (β̂III , β̂IV ) and (β̂I , β̂II) is

actually governed by ICC. The larger ICC, the more dependence between data. As a result,

as ICC increases, the difference in SSE and SEE between (β̂III , β̂IV ) and (β̂I , β̂II) increases.

Furthermore, increasing sample size increases the precisions of the estimates. In addition,

as previous seen in unadjusted estimates, the proportion of censoring has very mild impact

on SSE and SEE, whereas all the estimates are very robust with respect to the survival

distribution. The performance in terms of CP is good for all four estimates.

5 Application to Colorectal cancer data

The medical cost for patients who had colorectal cancer extracted from the Health Insurance

database in Taiwan was studied in this section. We considered 7646 patients who were

diagnosed first with colorectal cancer in 2001. The data on mortality and yearly medical
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costs were collected during the period of 2001 to 2006. three basic demographic variables,

sex, age and area of residence, and two hospital characteristics, type of hospitals (private or

public) and hospital level (regional hospital , teaching hospital and medical center) l were

included. Age was categorized into 6 groups, under 35 years of age, 36-45, 46-55, 56-65, 65-

75 and over 76. The area of residence included Taipei city, northern region, central region,

southern region and Kaohsiung. Furthermore, three disease related variables, Charlson index,

stage of cancer and treatment were recorded. We considered four treatment combinations, no

treatment, surgery and chemotherapy, surgery only and chemotherapy and radiotherapy. It

is important to understand how the treatment along with other covariates affects the medical

cost and survival.

The survival time and medical costs are censored on the patients who were still alive at

the end of 2006. The censoring was sorely caused by the limited study duration and it is

reasonable to assume that censoring is independent of all other variables.

Table 8 provides the summary statistics of controlling variables and unadjusted cost

estimates stratified by various controlling variables, where µ̂BTP is used to compute the

medical cost. There were 43under 35 years of age, 6.38% aged 36-45 years, 12.6% aged 46-55

years, 20.6% aged 56-65 years and 32.72% aged 66-75 years. 33.8% patients resided in Taipei

city and 13% of patients lived in southern area. 67.5% of patients were treated in the private

hospital and 51% of patients were treated in the regional hospital. Most of patients had stage

I (61%), while only 22.6% of patients had stage III and IV. Furthermore, 56% of patients

treated with surgery and chemotherapy and 14% of patients did not have any treatment.

The medical cost for male patients is higher (NT 50,000 dollars) than that for female

patients. Patients who were under 55 years of age had higher cost (over NT 50,000 dollars)

than those over 55 years of age. Patients lived in Taipei city would spend almost NT 50,000

dollars more than other areas, while patients lived in northern area had lowest medical cost.

Patients who were treated in public hospitals and medical centers would have higher medical

cost. The higher the disease stage, the higher the medical cost. Patients treated with surgery

and chemotherapy had highest cost and those treated only chemotherapy and radiotherapy

had the second higher medical cost.

Figure 2 displays the mean response curve for the medical cost. For the colorectal cancer,

the medical cost for the first-year cost is much higher than that for the following years. To

find an appropriate covariance pattern structure for the cost model, we use the 4th degrees of

polynomial mean models with a random intercept controlling for sex, age group, residential

areas, type of hospitals, hospital levels, cancer stage and type of treatments. Table 9 lists the

result for the model of fit for various covariance-covariance pattern. The Ante-dependence

structure (ANTE(1)), whose ijth element is σiσj

∏j−1
k=i ρk, has the smallest AIC value for
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both the unweighted and weighted model. The ANTE(1) is used to establish the final mean

model and the model of fit is listed in Table 10. Based on the likelihood ratio test, the cubic

model is selected.

(a) All sample (b) Weighted cost adjusted estimates

Figure 1: Stratified by treatment

Figure 2: Mean response curve for medical cost

Tables 11 list the coefficient estimates for the unweighted model and weighted model.

Most of parameter estimators obtained from these two models are similar, except for the age

and time effect by treatment interaction.

As compared to patients with 76 years of age and older, the younger group (under 35

years old and 36-45 years of age) would spend significantly more medical expenditure. Since

a cubic model is constructed, Figures 3 (a) and 3 (b) are drawn to demonstrate the difference

in the parameter estimations of time effect by treatment interaction. Controlling for all other

factors, the estimated medical cost in the unweighted model increases as the followup time

increases, while the estimated medical cost in the weighted model increases. Since the trend

displayed in Figure 3 (b) is similar to that showed in Figure 2 (b), the weighted model seems

to have a better fit. Based on the weighted model, patients with no treatment have the least

average medical cost in the first year, while patients with surgery and chemotherapy have

highest average medical cost in the first year. For the second to fourth year, patients with

surgery and chemotherapy and chemotherapy and radiotherapy spend similar, while average
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costs for the other two groups are similar. At the fifth year, the highest medical cost becomes

patients with chemotherapy and radiotherapy.

Controlling for other factors, males and patients who are 45 years of age or younger spend

significantly more, Patients who reside in Taipei city have significantly higher averaged cost

than those who reside in other areas. In particular, the largest difference appears between

Taipei city and northern area. As expected, patients who are treated in medical center

would spend more that patients who are treated in regional hospitals and teaching hospitals.

Furthermore, patients who have higher stage and more comorbidity would have higher average

medical cost.

(a) Unweighted cost adjusted estimates (b) Weighted cost adjusted estimates

Figure 3: Estimated medical cost based on the model in Table 11

6 Discussion and conclusion

The performance of the unadjusted estimate µ̂BTP is good when the censoring probability

is less than 50%. Although µ̂FH and µ̂UH uses cost histories to construct the estimates, the

construction of these estimates did not actually correct the information of censoring cost. The

estimate ÊFH
k in µ̂FH uses the full sample, which yields a smaller weight for each observation,

while the estimate ÊUH
k in µ̂UH uses the uncensored sample, which yields a larger weight for

each observation. As a result, the former estimate underestimates the cost, whereas the later

overestimate the cost. Although the construction of µ̂T and µ̂BT is different, the underlying
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concept is similar. That is, both estimates use the inverse of the subjects that are at risk

as a weight. The difference in performance between the two estimates may be due that µ̂T

takes into account of cost history, while µ̂BT uses the total cost.

When the probability of censoring is 50%, the accurate and precision decline dramatically,

especially when the survival distribution is right-skewed. This may result from reducing the

number of observable cost history data. Thus, other weight adjustments may be considered.

For example, one may use the methodology proposed by Robins, Rotnitzky and Zhao (1995)

and Hogan, Roy and Korkontzelou (2004) to handle the missing data in the longitudinal

setting.

The linear model for repeated measures adjusted by the inverse probability method per-

forms well under the simulation setting. In addition, a joint model proposed by Liu, Wolfe

and Kalbfleish (2007) for the mixed model and proportional hazards model that include a

shared random effect to incorporate the association between medical costs and survival may

be considered.
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Table 6: Performance of adjusted cost estimator under the uniform survival

P [C ≤ X] = 0.3 P [C ≤ X] = 0.4
n ρ β̂I β̂II β̂III β̂IV β̂I β̂II β̂III β̂IV

100 0.2 Bias 0.0007 0.0007 0.0006 0.0006 0.0003 0.0004 0.0005 0.0006
SSE 0.0463 0.0474 0.0465 0.0460 0.0489 0.0520 0.0496 0.0499
SEE 0.0456 0.0463 0.0466 0.0461 0.0474 0.0491 0.0487 0.0485
CP∗ 94.2% 94.0% 94.7% 94.7% 94.1% 93.4% 94.7% 94.2%

0.5 Bias -0.0017 -0.0017 -0.0009 -0.0010 0.0014 0.0008 0.0019 0.0017
SSE 0.1025 0.1066 0.0952 0.0941 0.1068 0.1148 0.1001 0.0989
SEE 0.1009 0.1041 0.0949 0.0938 0.1034 0.1094 0.0974 0.0963
CP 94.2% 94.0% 94.4% 94.3% 93.8% 93.4% 94.3% 94.3%

0.7 Bias 0.0043 0.0038 0.0028 0.0028 0.0051 0.0047 0.0055 0.0056
SSE 0.3350 0.3488 0.2959 0.2919 0.3306 0.3577 0.2932 0.2885
SEE 0.3208 0.3321 0.2873 0.2838 0.3270 0.3470 0.2924 0.2882
CP 93.3% 93.2% 94.3% 94.1% 94.3% 93.3% 94.7% 94.8%

250 0.2 Bias 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0003 0.0004
SSE 0.0295 0.0302 0.0299 0.0296 0.0306 0.0323 0.0313 0.0311
SEE 0.0291 0.0297 0.0296 0.0293 0.0304 0.0319 0.0310 0.0310
CP 94.8% 94.7% 94.8% 94.7% 94.9% 94.7% 95.0% 95.0%

0.5 Bias 0.0007 0.0007 0.0007 0.0007 -0.0017 -0.0018 -0.0016 -0.0017
SSE 0.0660 0.0685 0.0611 0.0602 0.0664 0.0721 0.0612 0.0606
SEE 0.0649 0.0672 0.0605 0.0597 0.0665 0.0712 0.0620 0.0613
CP 94.4% 94.2% 94.4% 94.7% 94.5% 94.2% 95.3% 95.1%

0.7 Bias -0.0012 -0.0020 0.0010 0.0010 -0.0011 -0.0016 0.0002 0.0002
SSE 0.2104 0.2194 0.1854 0.1831 0.2108 0.2285 0.1858 0.1829
SEE 0.2065 0.2146 0.1828 0.1805 0.2105 0.2261 0.1862 0.1833
CP 94.4% 94.2% 94.8% 94.6% 94.4% 94.6% 95.0% 95.2%

500 0.2 Bias -0.0002 -0.0002 -0.0001 -0.0002 -0.0006 -0.0007 -0.0006 -0.0006
SSE 0.0208 0.0213 0.0210 0.0207 0.0220 0.0234 0.0221 0.0223
SEE 0.0207 0.0211 0.0210 0.0208 0.0216 0.0228 0.0219 0.0220
CP 94.8% 95.0% 95.2% 95.3% 94.7% 94.7% 95.0% 94.9%

0.5 Bias -0.0005 -0.0006 -0.0003 -0.0003 -0.0004 -0.0004 -0.0007 -0.0007
SSE 0.0470 0.0488 0.0432 0.0427 0.0466 0.0505 0.0430 0.0424
SEE 0.0461 0.0478 0.0428 0.0423 0.0473 0.0508 0.0439 0.0434
CP 94.8% 94.7% 94.7% 94.7% 95.1% 94.7% 95.4% 95.5%

0.7 Bias -0.0020 -0.0021 -0.0012 -0.0012 0.0005 0.0010 -0.0011 -0.0012
SSE 0.1438 0.1500 0.1277 0.1259 0.1494 0.1618 0.1315 0.1300
SEE 0.1467 0.1526 0.1295 0.1279 0.1498 0.1615 0.1320 0.1299
CP 95.3% 95.2% 94.8% 95.0% 94.8% 95.1% 94.8% 94.8%

∗ CP is the coverage probability of the 95% confidence interval

18

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS044) p.4952



Table 7: Performance of adjusted cost estimator under the exponential survival

P [C ≤ X] = 0.3 P [C ≤ X] = 0.4
n ρ β̂I β̂II β̂III β̂IV β̂I β̂II β̂III β̂IV

100 0.2 Bias 0.0005 0.0007 0.0002 0.0004 0.0007 0.0007 0.0005 0.0004
SSE 0.0485 0.0497 0.0493 0.0488 0.0502 0.0531 0.0514 0.0510
SEE 0.0468 0.0476 0.0485 0.0478 0.0487 0.0505 0.0505 0.0499
CP∗ 94.1% 93.8% 94.5% 94.2% 93.8% 93.0% 94.5% 94.1%

0.5 Bias 0.0006 0.0008 -0.0002 -0.0002 0.0016 0.0014 0.0015 0.0014
SSE 0.1076 0.1130 0.0967 0.0961 0.1089 0.1193 0.1000 0.0990
SEE 0.1058 0.1102 0.0973 0.0965 0.1074 0.1156 0.0996 0.0987
CP 94.0% 93.6% 94.5% 94.4% 94.3% 93.8% 94.8% 94.8%

0.7 Bias 0.0009 0.0010 0.0023 0.0026 -0.0100 -0.0098 -0.0088 -0.0088
SSE 0.3476 0.3666 0.2941 0.2921 0.3496 0.3881 0.2954 0.2930
SEE 0.3367 0.3527 0.2897 0.2877 0.3399 0.3697 0.2939 0.2915
CP 93.6% 93.4% 94.3% 94.4% 94.1% 93.3% 94.5% 94.6%

250 0.2 Bias -0.0008 -0.0008 -0.0006 -0.0006 -0.0002 -0.0003 0.0000 0.0000
SSE 0.0300 0.0308 0.0306 0.0302 0.0314 0.0331 0.0322 0.0319
SEE 0.0300 0.0306 0.0307 0.0303 0.0312 0.0327 0.0320 0.0317
CP 94.3% 94.4% 94.7% 94.5% 95.0% 94.9% 94.7% 94.8%

0.5 Bias -0.0008 -0.0009 -0.0002 -0.0002 0.0019 0.0020 0.0019 0.0019
SSE 0.0681 0.0713 0.0625 0.0620 0.0703 0.0771 0.0637 0.0631
SEE 0.0680 0.0711 0.0619 0.0614 0.0692 0.0755 0.0633 0.0628
CP 94.9% 94.8% 94.8% 94.9% 94.5% 94.2% 94.7% 94.9%

0.7 Bias -0.0028 -0.0029 -0.0028 -0.0028 -0.0029 -0.0031 -0.0018 -0.0016
SSE 0.2198 0.2310 0.1882 0.1867 0.2248 0.2503 0.1882 0.1866
SEE 0.2173 0.2285 0.1844 0.1832 0.2202 0.2422 0.1874 0.1858
CP 94.4% 94.6% 94.3% 94.4% 94.4% 94.0% 94.8% 94.9%

500 0.2 Bias -0.0011 -0.0011 -0.0010 -0.0010 -0.0005 -0.0004 -0.0005 -0.0005
SSE 0.0210 0.0216 0.0214 0.0211 0.0227 0.0240 0.0230 0.0228
SEE 0.0213 0.0217 0.0218 0.0215 0.0221 0.0233 0.0227 0.0225
CP 95.2% 95.3% 95.3% 95.5% 94.1% 93.6% 94.4% 94.5%

0.5 Bias -0.0007 -0.0008 -0.0010 -0.0010 -0.0011 -0.0010 -0.0015 -0.0014
SSE 0.0491 0.0513 0.0447 0.0443 0.0498 0.0548 0.0449 0.0446
SEE 0.0484 0.0506 0.0439 0.0435 0.0493 0.0539 0.0448 0.0445
CP 94.5% 94.6% 94.9% 94.6% 94.7% 94.4% 94.7% 94.8%

0.7 Bias 0.0027 0.0029 0.0003 0.0003 0.0000 0.0002 0.0006 0.0006
SSE 0.1557 0.1646 0.1299 0.1291 0.1559 0.1727 0.1323 0.1311
SEE 0.1546 0.1627 0.1307 0.1298 0.1568 0.1731 0.1328 0.1316
CP 94.8% 94.5% 95.0% 95.1% 95.1% 94.8% 95.4% 95.4%

∗ CP is the coverage probability of the 95% confidence interval
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Table 8: Unadjusted cost estimates stratified by controlling variables

Variables n (%) Average (SE)
95% confidence interval

Lower Upper

Sex Female 3243 (43.32) 340,420 (6776) 327,138 353,703
Male 4244 (56.68) 388,329 (6454) 375,679 400,979

Age Under 35 202 (2.69) 444,445 (42633) 360,883 528,007
36 – 45 478 (6.38) 441,910 (21467) 399,834 483,987
46 – 55 944 (12.6) 451,895 (15035) 422,426 481,365
56 – 65 1542 (20.6) 398,935 (9667) 379,986 417,884
66 – 75 2450 (32.72) 343,839 (7398) 329,338 358,341
76 and over 1871 (25.11) 272,369 (7732) 257,214 287,525

Type of hospital Private 5051 (67.46) 353,790 (5587) 342,839 364,742
Public 2436 (32.54) 393,045 (8539) 376,309 409,783

Area of residence Central 1356 (18.11) 385,320 (11632) 362,521 408,121
Kaohsiung 1349 (18.02) 326,510 (10233) 306,452 346,569
Northern 1280 (17.07) 312,018 (9725) 292,957 331,081
Southern 973 (13) 335,075 (9642) 316,177 353,975
Taipei 2529 (33.8) 422,018 (9355) 403,682 440,354

Hospital level Regional 3817 (50.98) 374,393 (8037) 358,641 390,146
Teaching 2441 (32.6) 227,323 (10715) 206,322 248,326
Medical 1229 (16.42) 404,112 (6592) 391,191 417,034

Stage I 4535 (60.57) 272,942 (4594) 263,937 281,947
II 1256 (16.78) 509,370 (11815) 486,212 532,530
III 683 (9.12) 712,092 (27572) 658,050 766,135
IV 1013 (13.53) 749,552 (24541) 701,452 797,654

Treatment Surgery & Chemo 3790 (50.62) 452,333 (6576) 439,443 465,224
Surgery only 1510 (20.17) 290,698 (8447) 274,142 307,254
Chemo & radio 1115 (14.89) 388,780 (14568) 360,225 417,336
No 1072 (14.32) 83,998 (8550) 67,240 100,757

Total 7487 358,620 (4281) 349,173 368,073
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Table 9: Model of fit for covariance structure

Unweighted model Weighed model

df AIC −2 logL G2 AIC −2 logL G2

ANTE(1)#1 9 64846∗ 64826 – 60063∗ 60043 –

TOEPH#2 9 65066 65048 222 60359 60339 296

ARH(1)#3 6 65089 65075 249 60386 60372 328

CSH#4 6 65769 65757 931 X X

Independence 1 72624 72622 7796 68254 68252 8209

#1:ANTE(1) stands for ante-dependent covariance matrix.
#2:TOEPH stands for heterogeneous Toeplit covariance matrix.
#3:CSH stands for heterogeneous AR(1) covariance matrix.
#4:CSH stands for heterogeneous compound symmetry covariance matrix.

X:mod.el doesn’t converge
∗:model has a smaller AIC value.

Table 10: Model selections using likelihood ratio statistics

Model Linear Quadratic Cubic 4th degree

Linear – 610 2057 2073

Quadratic – – 1447 1463

Cubic – – – 16
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Table 11: Adjusted estimates

Variable
Unweighted model Weighted model
β̂ SE p value β̂ SE p value

Intercept 13.7276 0.4429 <.0001 13.8642 0.3638 <.0001
Sex

Female vs Male -0.0887 0.0179 <.0001 -0.0819 0.0182 <.0001
Age

35- vs 76+ -0.0175 0.0573 0.7602 0.1236 0.0601 0.0396
36 – 45 vs 76+ 0.0200 0.0398 0.6158 0.0888 0.0409 0.0299
46 – 55 vs 76+ -0.0042 0.0314 0.8943 0.0515 0.0320 0.1075
56 – 65 vs 76+ -0.0231 0.0270 0.3928 0.0195 0.0275 0.4771
66 – 75 vs 76+ -0.0685 0.0239 0.0042 -0.0442 0.0242 0.0681

Type of hospital
Private vs public -0.0193 0.0206 0.3475 -0.0271 0.0208 0.1942

Region
Central vs Taipei -0.0860 0.0261 0.0010 -0.0826 0.0265 0.0018

Kaohsiung vs Taipei -0.2108 0.0269 <.0001 -0.2067 0.0274 <.0001
Northern vs Taipei -0.2244 0.0277 <.0001 -0.2314 0.0281 <.0001
Southern vs Taipei -0.0417 0.0297 0.1599 -0.0291 0.0301 0.3346

Hospital level
Regional vs Medical -0.1490 0.0221 <.0001 -0.1359 0.0224 <.0001
Teaching vs medical -0.5160 0.0273 <.0001 -0.4717 0.0281 <.0001

Stage
II vs I 0.4054 0.0252 <.0001 0.3702 0.0253 <.0001

III vs I 0.6191 0.0322 <.0001 0.5639 0.0319 <.0001
IV vs I 0.7569 0.0274 <.0001 0.7023 0.0273 <.0001

Comorbidity 0.0835 0.0066 <.0001 0.0738 0.0066 <.0001
Treatment

Surgery & chemo vs no 3.0543 6.7400 <.0001 3.0191 0.3777 <.0001
Surgery vs no 3.7478 0.4727 <.0001 3.7789 0.4010 <.0001

Chemo & radio vs no 0.8964 1.7800 0.0751 0.8841 0.4387 0.0439
Time

Time -4.2170 0.6678 <.0001 -4.2025 0.5419 <.0001
Time2 1.3468 0.2589 <.0001 1.3852 0.2056 <.0001
Time3 -0.1383 0.0293 <.0001 -0.1450 0.0228 <.0001

Time × Treatment
Time × surgery & chemo -1.9857 -2.9000 0.0037 -2.2035 0.5634 <.0001

Time × surgery -3.3441 0.7121 <.0001 -3.6238 0.5974 <.0001
Time × chemo & radio -0.0142 -0.0200 0.9850 -0.1751 0.6557 0.7894

Time2 × Treatment
Time2 × surgery & chemo -0.0548 -1.8200 0.0680 0.6193 0.2139 0.0038

Time2 × surgery -0.1007 0.0311 0.0012 1.1042 0.2266 <.0000
Time2 × chemo & radio -0.0004 -0.0100 0.9899 0.0170 0.2504 0.9460

Time3 × Treatment
Time3 × surgery & chemo 0.5528 2.0900 0.0369 -0.0609 0.0237 0.0104

Time3 × surgery 1.0183 0.2752 0.0002 -0.1085 0.0251 <.0001
Time3 × chemo & radio -0.0126 -0.0400 0.9658 -0.0020 0.0279 0.9417
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