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1. Introduction

Weakly stationary time series are defined by a slow decay of autocorrelations and a pole of the

spectral density at the origin. Sample paths tend to exhibit local spurious trends and cycles of varying

length and magnitude. Visual separation of stationary long-memory components and deterministic

trend functions is difficult. Statistical methods such as kernel and local polynomial smoothing and

wavelet thresholding have been developed however in the literature for this purpose (see e.g. Hall

and Hart 1990, Csörgö and Mielniczuk 1995, Ray and Tsay 1997, Robinson 1997, Beran and Feng

2002a,b,c, Wang 1996, Johnstone and Silverman 1997, Yang 2001, Li and Xiao 2007, Kulik and

Raimondo 2009, Beran and Shumeyko 2011a; also see Ghosh and Draghicescu 2002a,b for quantile

smoothing). For kernel and local polynomial trend estimation, data driven iterative algorithms are

available (Ray and Tsay 1997, Beran and Feng 2002a,b, Ghosh and Draghicescu 2002b). For wavelet

thresholding, most results deal with the minimax approach. Often, minimax solutions are not suitable

for a concrete data analysis. Beran and Shumeyko (2011a) therefore suggest a data driven wavelet

method and derive asymptotically optimal tuning parameters (also see Li and Xiao 2007 for related

results). This is discussed in the next section (section 2). The derivation of the asymptotic mean

squared error leads to a natural decomposition of the trend estimator into a smooth and a discontinuous

component. An application of this decomposition is testing for discontinuities in the trend function

(Beran and Shumeyko 2011b). This is discussed in section 3 below. To obtain a method that is

applicable to relatively short time series, a bootstrap statistic and an algorithm for computing its finite

sample distribution are defined. The blockwise approach used here is similar to Lahiri (1993) (also

compare with Percival et al. 2000). The validity and consistency of the test procedure is shown under

the assumption of Gaussian residuals. A generalization to subordinated processes is possible but not

pursued here in detail. For literature on structural breaks in the long-memory context see for example

references in Sibbertsen (2004) and Banerjee and Urgab (2005).

2. Data adaptive wavelet estimation

Suppose we observe

(1) Yi = g(ti) + ξi

(i = 1, 2, ..., n) with ti = i/n, g ∈ L2 ([0, 1]) and ξi a Gaussian zero mean stationary process with

autocovariances of the form

(2) γ(k) = E (ξiξi+k) ∼
k→∞

Cγ |k|−α,

α ∈ (0, 1), Cγ > 0, and spectral density

f(λ) = (2π)−1
∑

γ(k) exp(−ikλ) ∼
λ→0

Cf |λ|α−1
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(see e.g. Beran 1994, Samorodnitsky 2007). Furthermore let φ(t) and ψ(t) be continuous piecewise

differentiable father and mother wavelets respectively, with compact support [0, N ] (for some N ∈ N)

such that

(3)

∫ N

0
φ(t)dt =

∫ N

0
φ2(t)dt =

∫ N

0
ψ2(t)dt = 1,

(4) ψ(0) = ψ(N) = 0

and, for any J ≥ 0, the system {φJk, ψjk, k ∈ Z, j ≥ 0} with

ψjk(t) = N1/22(J+j)/2ψ(N2J+jt− k), φJk(t) = N1/22J/2φ(N2J t− k),

is an orthonormal basis in L2(R). The number of vanishing moments of ψ is denoted by r ∈ N, i.e.

(5)

∫ N

0
tkψ(t) dt = 0, k = 0, 1, . . . , r − 1

and

(6)

∫ N

0
trψ(t) dt = νr 6= 0.

For every J ≥ 0, g ∈ L2[0, 1] has a unique orthogonal expansion

g(t) =

N2J−1∑
k=−N+1

sJkφJk(t) +

∞∑
j=0

N2J+j−1∑
k=−N+1

djkψjk(t),(7)

sJk =

∫ 1

0
g(t)φJk(t) dt, djk =

∫ 1

0
g(t)ψjk(t) dt.(8)

A (hard) thresholding wavelet estimator

(9) ĝ(t) =
N2J−1∑
k=−N+1

ŝJkφJk(t) +

q∑
j=0

N2J+j−1∑
k=−N+1

d̂jk I(|d̂jk| > δj)ψjk(t),

(J =decomposition level, q =smoothing parameter, δj =threshold) with

(10) ŝJk =
1

n

n∑
i=1

YiφJk(ti), d̂jk =
1

n

n∑
i=1

Yiψjk(ti)

can be understood as a combination of a smoothing component

(11) ĝlow(t) =
N2J−1∑
k=−N+1

ŝJkφJk(t)

and a higher resolution component

(12) ĝhigh(t) =

q∑
j=0

N2J+j−1∑
k=−N+1

d̂jk I(|d̂jk| > δj)ψjk(t).

The first component provides a good estimate of smooth functions whereas the second component is

useful for modeling discontinuities. The asymptotically optimal rate of the integrated mean squared

error (MISE) is attained for

J = Jn =
α

2r + α
log2 n+ C, (C ∈ R),(13)

q = qn = log2 n− J,(14)

2J+jδ2j → 0, 2(J+j)(2r+1)δ2j →∞, δ2j ≥
4eC2

ψN
−1+α(lnn)2

nα2(J+j)(1−α)
(15)
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(Li and Xiao 2007, Beran and Shumeyko 2011a) where Cψ is a certain constant and g is assumed to

be r times differentiable almost everywhere with a piecewise continuous rth derivative (where it exists).

Explicit expressions for q and J including constants that minimize the actual asymptotic value of the

MISE are also derived in Beran and Shumeyko (2011a). In principle, these results can be used for

an interative plug-in algorithm that allows for optimal data driven wavelet estimation of g.

3. Bootstrap based testing for jumps

Consider the null hypothesis H0 : g ∈ C[0, 1] against the alternative that g is only piecewise

continuous, with a finite number of isolated jumps. The idea of the test statistic proposed in Beran

and Shumeyko (2011b) is to compare residuals obtained by subtracting ĝ with residuals where only the

smooth component ĝlow was removed. Thus, let

(16) Xi = Yi − ĝ(ti), Xi,low = Yi − ĝlow(ti).

For blocks of size l define block sums

(17) ζi = Xi + · · ·+Xi+l−1, ζi,low = Xi,low + · · ·+Xi+l−1,low

and draw ζ∗1 , . . . , ζ
∗
k randomly with replacement to obtain

(18) T ∗kl = a−1l

(
k−1/2

k∑
i=1

ζ∗i

)
, T ∗kl,low = a−1l

(
k−1/2

k∑
i=1

ζ∗i,low

)

where al = C
1/2
γ l1−α/2. It can be shown that under H0 both statistics have the same asymptotic

distribution whereas this is no longer the case under H1. More specifically, under H1, the conditional

variance (given the observed data) of T ∗kl is equal to

(19) V arn (T ∗kl) = σ̃2 + op(1),

with σ̃2 = 2σ2(1− α)−1(2− α)−1 whereas

(20) V arn
(
T ∗kl,low

)
= σ̃2 + vn + op(1)

with vn → ∞. Asymptotic normality of both statistics under H0 and H1 can also be derived. This

leads to testing H0 : var(T ∗kl,low) = var(T ∗kl) against H1 : var(T ∗kl,low) > var(T ∗kl). To obtain a method

that is also applicable for moderate sample sizes, a bootstrap based procedure is developed by comparing

(21) Wlow = σ̃−2
m∑
i=1

(
T
∗(i)
kl,low − T̄

∗
kl,low

)2
,

(with T
∗(i)
kl,low representing bootstrapped values of T ∗kl,low) with quantiles of

(22) W = σ̃−2
m∑
i=1

(
T
∗(i)
kl − T̄

∗
kl

)2
.
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