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1 Introduction

Estimates of intra-cluster correlations are routinely produced for designing and analyses of large cross-national
sample surveys like the European Social Survey (see Ganninger 2010:19). Kish (1962) defined intra-cluster
correlation as the ratio of the between cluster variance to the total variance. Thus, according to Kish’s definition,
intra-cluster correlation is a strictly positive parameter. It is well-known (Wang et al. 1991) that standard
variance component methods, such as the ANOVA method, can frequently produce negative estimates, especially
when the true intra-cluster correlation and the number of clusters are small, a situation that can arise in practice
(Killip et al. 2004). A standard solution to this problem is to truncate the intra-cluster correlation estimate to
0. (Campbell et al. 2005).

In this paper, we present a new estimator of the intra-cluster correlation for the one-way random effects model
and prove that it is strictly positive. We compare the proposed estimator with the ANOVA estimator using a
Monte Carlo simulation study.

2 The one-way random effects model

Let yij denote the value of the study variable for the jth unit of the ith cluster (i = 1, . . . ,m; j = 1, . . . , ni).
We consider the following one-way random effects model:

yij = µ+ vi + εij , (1)

where µ is a fixed unknown parameter; vi and εij are independent random errors with vi ∼ N
(
0, σ2

v

)
and

εij ∼ N
(
0, σ2

ε

)
, i = 1, . . . ,m; j = 1, . . . , ni. Under this model, the expected value and the covariances of the

study variable are given by

E (yij) = µ

Cov (yij , yi′j′) =


σ2
v + σ2

ε i = i′, j = j′

σ2
v i = i′, j 6= j′

0 otherwise,

respectively. Thus, under the model,

E (ȳi) = µ

V ar (ȳi) =
σ2
ε

ni
+ σ2

v = σ2
ε

(
1

ni
+ λ

)
λ =

σ2
v

σ2
ε

.

The intra-cluster correlation coefficient is defined as

ρ =
σ2
v

σ2
v + σ2

ε

=
λ

1 + λ
> 0 . (2)

The problem is to find an estimator λ̂ such that the resulting estimator ρ̂ fulfils the constraint ρ̂ > 0.
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Define MSW =
1

nT −m
m∑
i=1

ni∑
j=1

(yij − ȳi)2 and MSB =
1

m− 1

m∑
i=1

ni (ȳi − ȳ)
2
. Following Ghosh and Lahiri

(1987), we estimate λ by

λ̂ANOVA = b
MSB−MSW

MSW
= b (F − 1) ,

where b =
m− 1

m∑
i=1

ni

(
1− ni∑

nj

) and F =
MSB

MSW
. The well-known ANOVA estimator of ρ is given by

ρ̂ANOVA =
λ̂ANOVA

1 + λ̂ANOVA

. (3)

Note that ρ̂ANOVA is negative that if MSW>MSB in which case ρ̂ANOVA is usually truncated to zero.

3 A strictly positive estimator of ρ

First consider the case when both µ and σ2
ε are known. We define an adjusted likelihood function of λ as

Lc
adj (λ|y) = λ

c
2L (λ|y) for any arbitrary but fixed 0 < c < m. For the special case of c = 2, see Li and Lahiri

(2010).

The maximization of Lc
adj (λ|y) is equivalent to that of

c

2
log(λ) + log [L (λ|y)]. The adjusted maximum

likelihood estimator of λ is obtained as a solution of

dl
(
µ, σ2

ε , λ|y
)

dλ
+

c

2λ
= 0,

which is equivalent to

1

σ2
ε

m∑
i=1

(ȳi − µ)
2(

1

ni
+ λ

)2 −
m∑
i=1

(
1

ni
+ λ

)−1
+
c

λ
= 0 . (4)

3.1 The balanced case

In this section, we assume ni = n; bi =
1

ni
=

1

n
∀i so that b =

1

n
. Defining ai =

(ȳi − µ)
2

σ2
ε

and a =
1

m

m∑
i=1

ai,

we can write (4) as

fc(λ) =
ma

(λ+ b)2
− m

(λ+ b)
+
c

λ
(5)

Theorem 1. For m > 2 there exists exactly one positive λ with fc(λ) = 0 which has the solution

λ̃c =
ma− (m− 2c) b+

√
(ma− (m− 2c) b)

2
+ 4c (m− c) b2

2(m− c)
(6)

Remark 1. The second solution of the quadratic equation obtained from equation (5) is obviously negative for
0 < c < m.

The proof follows from

Lemma 1. The inequality λ̃c > 0 can be sharpened by

λ̃c >
c

m− c
(a+ b) >

c

m− c
b .

Remark 2. For c = 0 the maximum likelihood solution is

λ̃0 =

{
0 for a < b

a− b for a ≥ b .

For arbitrary positive a, b and c with 0 < c < m we define

λc = λ̃c −
c

m− c
(a+ b) =

(m− 2c) a−mb+

√
(ma− (m− 2c) b)

2
+ 4c (m− c) b2

2(m− c)
. (7)
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Lemma 2. For arbitrary positive a, b

λc =
(m− 2c) a−mb+

√
(ma− (m− 2c) b)

2
+ 4c (m− c) b2

2 (m− c)

is a monotone increasing function of c in (0,m) .

Remark 3. From Lemma 2 it follows

a− b+ |a− b|
2

= λ0 < λc <
a2

(a+ b)
= limc→mλc (8)

Lemma 3. For arbitrary positive a, b

λc =
(m− 2c) a−mb+

√
(ma− (m− 2c) b)

2
+ 4c (m− c) b2

2 (m− c)

is a concave function of c in (0,m) .

Lemma 2 and Lemma 3 show that λc is a monotone increasing and concave function of c where c ∈ (0,m).
Now consider the case when µ and σ2

ε are unknown. We propose to estimate them by their usual unbiased
estimators:

µ̂ = ȳ =
1

mn

m∑
i=1

n∑
j=1

yij =
1

m

m∑
i=1

ȳi

σ̂2
ε =

1

m (n− 1)

m∑
i=1

n∑
j=1

(yij − ȳi)2 = MSW .

Furthermore, we define MSB =
n

m− 1

m∑
i=1

(ȳi − ȳ)
2

and

â =
m− 1

mn

MSB

MSW
.

Then, from
E
(
σ̂2
ε

)
= E (MSW ) = σ2

ε

and

E

(
1

n
MSB

)
=
σ2
ε

n
+ σ2

v = σ2
ε(λ+ b)

it follows that

E (â) ≈ m− 1

m
(λ+ b)

If we now substitute
m

m− 1
â for a in equation (6) we get as an estimator of λ

λ̂c =

(m− 2c)
m

m− 1
â−mb+

√(
m

m

m− 1
â− (m− 2c) b

)2

+ 4c (m− c) b2

2(m− c)
. (9)

This estimator has the property λ̂c > 0 and as a consequence of inequality (8) has expected value

λ ≈ E
(

m

m− 1
â− b

)
< E

(
λ̂c

)
< E

(
m

m− 1
â

)
≈ λ+ b .

3.2 The unbalanced case

For the unbalanced case, the (adjusted) likelihood method can have local maxima even for c = 0, which
corresponds to the usual maximum likelihood function. Using a theorem of Descartes (Anderson et al. 1998),
it can be shown (see Gabler et al. 2011) that the adjusted maximum likelihood function is quasi-concave in R+

when c = m− 1. Therefore, there is a unique positive maximum in R+.
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An extension of the balanced case is obtained by substituting in (9) â by â =
m− 1

m
b
MSB

MSW
. Thus, the

estimator of λ is given by

λ̂c =

(m− 2c) b
MSB

MSW
−mb+

√(
mb

MSB

MSW
− (m− 2c) b

)2

+ 4c (m− c) b2

2(m− c)
. (10)

Note that λ̂c > 0 and the inequality (8), we obtain

λ ≈ E
(
b
MSB

MSW
− b
)
< E

(
λ̂c

)
< E

(
b
MSB

MSW

)
≈ λ+ b.

Using the fact c (m− c) > 0 and comparing the new estimator λ̂c with the ANOVA estimator

λ̂ANOVA = b

(
MSB

MSW
− 1

)
(11)

we get λ̂c > λ̂ANOVA.

4 Simulation Study

We compare the proposed estimator with the ANOVA estimator using a Monte Carlo simulation study. We
consider a universe ofM = 1000 clusters, each of size Ni = N = 500. A set of study variables y is generated using
model (1) with different combinations of (σ2

ε , σ
2
v). Thus, twelve different y vectors are generated with different

values of rho. From these populations, repeated two-stage samples are drawn with different sampling fractions
at the first and second stages. We choose three different values for m = {30, 250, 625}. For a fair comparison,
the sample sizes for different sample design settings are kept approximately the same. In particular, we choose
ni = n = {85, 10, 4}, respectively, such that n ·m ≈ 2500.

Figures 1 and 2 display an overview of the distribution of the 1000 estimates under twelve different scenarios
described above for large (n = 85) and small (n = 4) cluster sizes. In Figure 1, ANOVA estimates produces
some negative values for small values of ρM, i.e. in scenarios displayed in the two lower rows of the panel plot.
Our estimates remain positive all the time and in general improve on the ANOVA estimates. This effect is more
pronounced when small cluster sizes are considered as can be seen in Figure 2. Here, the ANOVA estimator
can yield negative values even for moderate ρM as can be seen in the panels to the right of the upper row of the
plot.

Distribution of estimators by Type

Number of sampled PSUs = 30, Number of sampled elements within PSUs = 85
Balanced case
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Figure 1: Distribution of 1000 estimates under different scenarios for continuous study variable - large cluster
sizes (balanced)
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Distribution of estimators by Type

Number of sampled PSUs = 625, Number of sampled elements within PSUs = 4
Balanced case
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Figure 2: Distribution of 1000 estimates under different scenarios for continuous study variable - small cluster
sizes (balanced)

5 Summary

For small values of ρ, our simulation studies show that the choice of c has an influence on the point estimates.
Overall, the proposed estimator of the intra-cluster correlation is appealing in a wide range of scenarios. If c
is sufficiently small, the proposed estimator is better than the usual ANOVA estimator in terms of the mean
square error criterion.
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