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Introduction

The explanation of heterogeneity that occurs when combining different studies is an important

issue in meta analysis. Besides including a heterogeneity parameter in the analysis, it is also important

to understand the possible causes of heterogeneity. One possibility is to incorporate study-specific

covariates in the analysis that account for such between-trial variability. This yields the random

effects meta regression model. We examine commonly used tests on the regression coefficients and

propose a new method for constructing confidence intervals for the regression coefficients based on

principles from generalised inference. The proposed method will be compared by simulation studies

with respect to coverage probability and average length.

The random effects meta regression model

Before we start, let us fix some notation. Let k ∈ N, n = (n1, . . . , nk)
′ ∈ Nk, τ ∈ R>0,

σ = (σ1, . . . , σk)
′ ∈ Rk>0 and δ = (δ1, . . . , δk)

′ ∈ Rk>0. For any vector c ∈ Rk, let [c] denote the

k × k matrix having c on the diagonal, in signs diag[c] = c. If c is a scalar, i. e. c ∈ R, then let [c]k
denote the k × k matrix having c on each of its diagonal elements. Hence,

[τ ]k =

τ . . .

τ

 , [δ] =

δ1 . . .

δk

 , ([τ ]k + [δ])−1 =


1

τ+δ1
. . .

1
τ+δk

 .

We want to perform a meta analysis on k studies. We denote the summary response of the jth

study by Yj . For example, one may think of Yj as the mean response of nj patients having participated

in the jth study, in signs: Yj = 1
nj

∑
i Yji and Yji is the individual response of patient i in the jth

study. Let θj denote the expected value and δj denote the variance of Yj . The variance δj will usually

be a function of the jth population variance σj and its sample size nj . For example, in case of Yj
denoting a mean response, it is δj =

σj
nj

. Each study comes with an estimate Dj of δj . Let Sj denote

the sum of squares of the jth study, in signs: Sj =
∑

i (Yji − Yj)2. If Yj denotes the mean response,

we may define Dj :=
Sj

nj(nj−1) , since E(Sj) = σj(nj − 1).

Let D = (D1, . . . , Dk), S = (S1, . . . , Sk) and Y = (Y1, . . . , Yk). Consider the Gaußian-Gaußian

hierarchical model (j = 1, . . . , k):

Yj |θj ∼ N (θj , δj) ,(1)

θj ∼ N (xjβ, τ) ,(2)

where xj denotes the jth row of a k× p matrix X with rank(X) = p < k− 1 and β ∈ Rp. The matrix

X is referred to as the design matrix of the model. The vector β is a vector of parameters and called

the vector of regression coefficients. The parameter τ stands for the variability between the studies.

If we assume that (Y, θ1, . . . , θk) has a multivariate Gaußian distribution, the marginal model for Y
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yields the random effects meta regression model. In matrix notation,

(3) Y ∼ Nk (Xβ, [τ ]k + [δ]) .

In particular, Yj ∼ N (xjβ, τ + δj) for j = 1, . . . , k. Since N is infinitely divisible, we have

(4)
Sj
σj
∼ X2

nj−1, for j = 1, . . . , k.

Here, X2
ν denotes the distribution of a chi-square random variable with ν degrees of freedom. Let y

be the observed value of Y , let s be the observed value of S and d the observed value of D. From (4)

follows

(5) Dj =
Sj

nj(nj − 1)
=
σj
nj
· Sj
σj(nj − 1)

=
δj

Kj(nj − 1)
, where K−1j ∼ X2

nj−1
.

In this paper, we will look at different constructions of confidence intervals for the regression

coefficients βi, i = 1, . . . , p, in the presence of the nuisance parameters τ and δ. For notational brevity,

define Ωτδ = ([τ ]k + [δ])−1. Then V(Y ) = Ω−1τδ and Y ∼ Nk(Xβ,Ω
−1
τδ ). Let

Vτδ =
(
X ′ΩτδX

)−1
,

Bτδ = VτδX
′Ωτδ =

(
X ′ΩτδX

)−1
X ′Ωτδ,

Hτδ = XBτδ = X
(
X ′ΩτδX

)−1
X ′Ωτδ,

Eτδ = Ik −Hτδ = Ik −X
(
X ′ΩτδX

)−1
X ′Ωτδ.

Then Vτδ is a p× p matrix, Bτδ is a p× k matrix and Hτδ and Eτδ are k × k matrices. In particular,

Bτδ, Hτδ and Eτδ are linear operators acting on Rk, the image space of Y . For simplicity write:

V = Vτδ, B = Bτδ, H = Hτδ, E = Eτδ and Ω = Ωτδ whenever τ, δ are equal to the true τ, δ in (3).

Since E(BY ) = β and V(BY ) = V , this yields an estimator of β, namely BY , with

BY ∼ Np (β, V ) .

The observed value of BY is By. In fact, if we assume that τ, δ were known, BY is the maximum

likelihood estimator of β.

Now, let bi = (bi1, . . . , bik) denote the ith row of B. Then biy is an estimate of βi, since

biY ∼ N (βi, Vii). Say, τ̂ and δ̂ are consistent estimators of τ and δ. Let V̂ = Vτ̂ δ̂, B̂ = Bτ̂ δ̂, Ĥ = Hτ̂ δ̂,

Ê = Eτ̂ δ̂ and Ω̂ = Ωτ̂ δ̂. To keep notation consistent, we denote the ithe row of B̂ by b̂i. Since τ̂ and δ̂

are consistent, also b̂i
P→ bi and V̂ii

P→ Vii and, hence, b̂iY−βi√
V̂ii
 N(0, 1), which yields the approximate

(1− γ)-confidence interval for βi and fixed i = 1, . . . , p

(6)

[
b̂iY + z γ

2
·
√
V̂ii, b̂iY + z1− γ

2
·
√
V̂ii

]
for any γ ∈ (0, 1]. Here, zγ denotes the γ-quantile of the standard Gaußian distribution N(0, 1).

The confidence interval in (6) is based on approximations of the nuisance parameters τ and δ.

If we can assume that D is consistent for δ, we simply use δ̂ := D. In the case of τ , we are spoilt for

choice. For an extensive list of possible estimators and a study of their performances see [5].

Generalised confidence intervals for the regression coefficients

The concepts of generalised inference were developed by Weerahandi, see [9]. His interest was

in constructing exact confidence sets for all parameters of interest, in our case β, in the presence of

2

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS031) p.4592



nuisance parameters, here τ and δ. To construct such exact confidence sets, it is necessary to find

a (generalised) pivotal quantity for β which distribution is free of the nuisance parameters τ and δ.

First, though, we will need to construct pivotal quantities for τ and δ.

A pivotal quantity for δ is quickly constructed. Recall that under model (3) the estimator Dj

in each study is distributed via (5). Let

(7) D̃j := δj ·
dj
Dj

= δj · dj ·
Kj(nj − 1)

δj
= dj(nj − 1)Kj , where K−1j ∼ X2

nj−1
.

The distribution of D̃j is independent of unknowns. The observed value of D̃j is d̃j = δj which is

monotone in δj . Hence, D̃j is a pivotal quantity for δj .

Unfortunately, the construction of a pivotal quantity for τ is not as straight forward as for δ.

The following construction is based on a quadratic form used to construct confidence intervals for

τ , see [2, 4]. We follow an idea of [3] to extract a generalised pivotal quantity from this quadratic.

Applying the linear operator E to the random vector Y yields the residuals EY of (3). In standard

linear regression analysis ‖EY ‖2 is frequently used as a measure of model fit. When dealing with

heteroscedasticity, one works with a weighted quadratic instead:

(8) Qδ(τ) := (EτδY )′Ωτδ(EτδY ) = Y ′
(
E′τδΩτδEτδ

)
Y =

∥∥∥V(EτδY )−
1
2 · EτδY

∥∥∥2 .
Let qδ denote the observed version of Qδ. That is qδ(τ) = y′ (E′τδΩτδEτδ) y. As the above notation

already suggests, we want to consider Qδ as a function in τ . Recall that Ωτδ denotes a diagonal

matrix. Note that for all j = 1, . . . , k each (diag Ωτδ)j is strictly monotone decreasing in τ . Moreover,

diag Ωτδ converges uniformly to 0, in signs: limτ ‖diag Ωτδ‖∞ = 0. Hence, Qδ(τ) is strictly monotone

decreasing in τ with limτ Qδ(τ) = 0. This enables us to define an inverse function to Qδ, namely

Pδ (η) =

{
Q−1δ (η) : 0 < η < Qδ(0)

0 : otherwise
, pδ (η) =

{
q−1δ (η) : 0 < η < qδ(0)

0 : otherwise

for η > 0. The observed value of Pδ(η) is pδ(η). Let us now investigate the distribution of Qδ(τ).

Since E = Eτδ is a linear operator, EY is multivariate Gaußian distributed with E(EY ) = 0 and

V(EY ) = Ω−1 − X(X ′ΩX)−1X ′. Hence, Ω · V(EY ) = Ik − H, which is idempotent with rank

k − p > 1. Thus Qδ(τ) ∼ X2
k−p. Define,

T̃ := pD̃ (Qδ(τ)) = pdK(Q), where K = (K1, . . . ,Kp), K
−1
j ∼ X2

nj−1 and Q ∼ X2
k−p.

We claim that T̃ is a generalised pivotal quantity of τ . The distribution of T̃ is free of unknowns and,

since qδ is monotone decreasing and τ > 0, the observed value of T̃ is t̃ = pδ(qδ(τ)) = q−1δ (qδ(τ)) = τ ,

which is monotone in τ .

Let Ṽ = VT̃ D̃, B̃ = BT̃ D̃. Also, let b̃i denote the ith row of B̃. The observed values of Ṽ , B̃ and

b̃i are V,B and bi respectively. Note that 1√
Vii

(biY − βi) ∼ N(0, 1). Consider

(9) Li := b̃iy −
biY − βi√

Vii
·
√
Ṽii. = b̃iy −N ·

√(
X ′ ([pdK(Q)]k + [dK])−1X

)−1
ii
,

where K = (K1, . . . ,Kk), K
−1
j ∼ X2

nj−1, Q ∼ X2
k−p and N ∼ N(0, 1). Thus, the distribution of Li

only depends on the observed data and is free of the nuisance parameters τ and δ. The observed value

of Li is βi which is monotone in βi. Hence, Li is a generalised pivotal quantity for βi. Let Li denote

the distribution of Li and li,γ its γ-quantile for any γ ∈ (0, 1]. Then for any fixed γ ∈ (0, 1] and fixed

i = 1, . . . , p

(10) [li, γ
2
, li,1− γ

2
]
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is an exact (1− γ)-confidence interval for βi.

The question remains how to obtain the necessary quantiles li,γ . For this, we generate random

variables K1, . . .Kk, Q and N with K−1j ∼ X2
nj−1 and Q ∼ X2

k−p and N ∼ N(0, I) and define Li such

as in (9). Then Li has the distribution Li. Let (Lil)l∈N be a sequence of independent draws from Li

and let li,γ,m denote the empirical γ-quantile of (Lil)l≤m. Then li,γ,m
P→ li,γ for m→∞.

So, instead of obtaining approximate confidence intervals for βi such as in (6), we obtain exact

confidence interval by approximating the quantiles li,γ . By doing so, we have shifted the approximation

problem from a statistical one – that depends on sample size – to a numerical one – that may be solved

up to any required precision.

Performance study of the confidence intervals based on a real world example

We studied the performance of the above confidence intervals with respect to coverage probability

and average length. For comparison, we turned to a data set that has already been discussed in the

literature, e. g. in [1, 5]. This data set is indeed quite predesignated for such an analysis. It consists

Table 1: Data of 13 clinical trials of the Bacillus Calmette-Guérin vaccine efficacy.

Trial Author Year Vaccinated Not vaccinated Absolute

Disease No disease Disease No disease Latitude

A Aronson 1948 4 119 11 128 44

B Ferguson & Simes 1949 6 300 29 274 55

C Rosenthal et al 1960 3 228 11 209 42

D Hart & Sutherland 1977 62 13536 248 12619 52

E Frimodt-Moller et al 1973 33 5036 47 5761 13

F Stein & Aronson 1953 180 1361 372 1079 44

G Vandiviere et al 1973 8 2537 10 619 19

H TPT Madras 1980 505 87886 499 87892 13

I Coetzee & Berjak 1968 29 7470 45 7232 27

J Rosenthal et al 1961 17 1699 65 1600 42

K Comstock et al 1974 186 50448 141 27197 18

L Comstock & Webster 1969 5 2493 3 2338 33

M Comstock et al 1976 27 16886 29 17825 33

of a combination of 13 clinical trials which evaluated the efficacy of the Bacillus Calmette-Guérin

vaccine for the prevention of tuberculosis. The distance of a trial to the equator may serve as a

potential influential covariate here. One can think of this distance as a surrogate for the presence of

environmental mycrobacteria that provide a certain level of natural immunity against tuberculosis.

The data set is put together in Table 1. It can also be found in the metafor package of the

statistical software environment R, see [7, 8]. Table 1 and Figure 1 show how unbalanced the data

Figure 1: Barplots of study sizes and subject assignments in each study. The measure of unbalance is
v−¬v
v+¬v where v is the number of vaccinated and ¬v is the number of non-vaccinated subjects in a study.
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are when it comes to study size. Study sizes range from a minimum of 262 in trial A to 176782 in

trial H. But the clinical trials not only differ in total sample size. Within each study the proportion of

vaccinated and non-vaccinated subjects is quite different. Whereas most trials are relatively balanced

between the two groups, Figure 1 shows that in some trials the vaccinated group is considerably larger
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than the non-vaccinated, see trials K and G for example. All this makes the data difficult to access

for methods relying on good statistical approximations.

Following [1] and [5], we use the logarithm of the relative risk as outcome measure in the analysis.

The model of choice is (3) with one covariate. The parameters of interest are the regression coefficients

β0, β1 for the intercept and slope of the regression line respectively. In the analysis and in the simulation

study we choose the restricted maximum-likelihood estimator τ̂ for τ , see [6]. Besides the above

confidence intervals (6) and (10), we have also included an adjustment to (6) by Knapp and Hartung

in our analysis, see [5]. We used the statistical software environment R for analysis and simulation

study, see [7].

Table 2: Different 95% confidence intervals for β0 and β1 respectively. The exact confidence intervals

are based on 1000 draws from Li, i = 1, 2 respectively.

for β0 lower bound upper bound

Approximate -0.24 0.74

Adjusted -0.37 0.88

Exact -0.77 0.98

for β1 lower bound upper bound

Approximate -0.04 -0.01

Adjusted -0.05 -0.01

Exact -0.05 -0.00

Figure 2: Different 95% confidence intervals for β0 and β1 respectively. The dotted lines correspond

to the point estimates b̂0y and b̂1y respectively. The exact confidence interval is based on 1000 draws

from Li, i = 1, 2.

−0.77 −0.52 −0.27 −0.02 0.18 0.38 0.58 0.78 0.98

Approximate

Adjusted

Exact

Confidence intervals for the intercept

−0.053 −0.043 −0.033 −0.023 −0.013 −0.003

Approximate

Adjusted

Exact

Confidence intervals for the slope

Table 3: Performance of 95% confidence intervals for β0, β1 with respect to coverage probability and

expected length based on 1000 random draws of (Y,D) via (3) and (5). The generalised confidence

intervals for each (Y,D) were based on 120 draws from Li, i = 0, 1 respectively.

β0 Approximate Adjusted Exact

Length 0.8453 0.9386 1.3840

Covers 0.8720 0.8990 0.9640

β1 Approximate Adjusted Exact

Length 0.0246 0.0273 0.0382

Covers 0.9020 0.9150 0.9580

Applying the methods to the data in Table 1 yield the results in Table 2 and Figure 2. The

confidence intervals based on stochastic approximation are shorter than the exact one. However, as

we shall see in the simulation study, these intervals are in fact underestimating the variability of β̂ and

the two confidence intervals based on (6) claim way more confidence than they can actually guarantee.

For the simulation, we fixed a set of parameters β and δ and generated responses Y and D

from (3) and (5) respectively. We choose β = β̂ and δ = δ̂, where β̂ and δ̂ correspond to the point
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estimates based on the data set from Table 1. For each simulated pair (Y,D) we logged the lengths of

each of the 95% confidence intervals and whether or not the interval was covering the true parameter

β. The results of the simulation are put together in Table 3.

As we can see, the mean length of the approximate and the adjusted confidence intervals are

smaller than the exact ones. However, the cost of their short mean length bears their coverage proba-

bility. The approximate confidence interval as defined in (6) is underestimating the true variability of

β̂, which leads to a short but poor performing confidence interval. The adjustment introduced in [5]

accounts for the variability of τ̂ by introducing a correction factor to its estimated standard derivation.

This makes the expected length of the confidence interval larger but brings its coverage probability

closer to the requested significance bound. In both cases, though, the approximate confidence intervals

do not fulfil the requested confidence bound. The exact confidence intervals, we have developed in

this paper, are in fact the only ones to adhere the requested confidence bounds.

Conclusion

We have developed a new method for constructing confidence intervals for the regression coeffi-

cients in the random effects meta regression model. The method we have developed here is based on

principles from generalised inference. In particular, the proposed intervals are exact. In simulation

studies, we were able to show that the coverage probability of our proposed intervals not only meet

predefined confidence bounds but also outperform classic approaches based on stochastic approxima-

tion.
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