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1. Introduction and motivation   

In health care monitoring we are typically dealing with attribute data for which the rate of failure 
(malfunctioning equipment, surgical error, recurrence of cancer) p should be (very) small. For some review 
material, see e.g. Sonesson and Bock(2003) and Shaha(1995). Suitable control charts in this situation can be 
based on waiting times till r failures have occurred, with usually 1≤ r≤5. If such a negative binomially 
distributed waiting time is too small, a signal is given. In Albers(2010) the optimal choice of r is derived and 
estimation of the typically unknown p on the basis of a Phase I sample is discussed. Because of the small 
false alarm rates (FAR’s) involved, the estimation effects involved are not at all negligible and suitable 
corrections are derived. 

Quite often p will vary from patient to patient and such heterogeneity will lead to overdispersion. 
Assuming a negative binomial distribution then no longer is correct and a nonparametric approach becomes 
attractive. However, the small probabilities involved often ruin this possibility: Phase I samples will usually 
be much too small to avoid huge estimation effects in a fully nonparametric approach.  In Albers(2011) it is 
demonstrated how this obstacle can be overcome in a very satisfactory manner by applying a MAX-chart 
instead. Here no longer the total waiting time till the rth failure is used. Instead a signal results if each of the r 
underlying waiting times for a single failure is sufficiently small. If homogeneity happens to be true after all, 
this MAX-chart is only slightly less efficient than the optimal negative binomial one. Once these ideal 
conditions no longer hold, the estimated version of the MAX-chart, being nonparametric, remains valid, 
which obviously does not hold true for its negative binomial competitor. 

In a sense, the results above already provide a quite satisfactory solution for the monitoring problem 
described. However, we should realize that so far all optimality considerations and comparisons have been 
exclusively based on the change point model. Here the process is In-Control (IC) till a given point, at which 
it suddenly goes Out-of-Control (OoC), as the defective rate  jumps from p to θp, for some θ>1. This change 
point model is the common or standard choice, so it makes sense to begin by following it. Nevertheless, we 
should realize that other possibilities do occur as well. One of these, which will be the topic of the present 
paper, concerns intermittent OoC behavior. Here the process is not permanently showing a higher defective 
rate under OoC, but stretches governed by p and by θp keep alternating. Note that especially with health care 
applications this possibility seems likely to occur. In industrial settings, signals typically lead to direct 
interventions, forcing the process back into the IC state; in the present type of application this is often (less) 
feasible. 

We shall begin by analyzing how intermittent behavior of the process affects the resulting waiting 
times on which the charts are based. It turns out that in the intermittent case the difference in the waiting time 
distribution between IC and OoC becomes more concentrated in the lower tail in comparison to what 
happens in the change point situation. The phenomenon of so-called tail alternatives is known from other 
contexts as well, see e.g. Albers et al.(2001). Some optimality considerations readily suggest how to adapt 
the MAX-chart to this situation. It will be argued that the proper way to react to tail behavior is to signal 
already if all but j, with typically j=0, 1 or 2, of the r underlying waiting times for a single failure are 
sufficiently small. Note that in a sense the term ‘already’ is misleading: to achieve the same FAR in each 
case, an increase of j will imply a decrease of the value which is considered ‘sufficiently small’. This 
decrease is in line with the desire to improve the detection power against tail alternatives. A numerical study 
is presented to illustrate that the suggested approach indeed turns out to work well. 

The paper is organized as follows: in section 2 the notation and methodology is introduced by means 
of the MAX-chart. The intermittent case and the corresponding  proposal for a chart are the subject of section 
3. 
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2. The MAX-chart 
Our starting point is the change point situation: a sequence D1, D2, … of independent identically 

distributed random variables (r.v.’s) with failure probability P(D1=1)=1-P(D1=0)=p during IC. During OoC, 
this p becomes θp for some θ>1 and the process should quickly be stopped.  For this purpose consider the 
subsequent waiting times till a failure occurs, denoted by Xi, i=1, 2,... Clearly, these r.v.’s will be geometric: 
P(Xi=k)=p(1-p)k-1, k=1,2,.... In Albers(2011) a MAX-chart is proposed, which for some r (typically r≤5) 
signals if max(X1, ..., Xr) is too small (and otherwise continues towards the next group of r Xi’s). As 
mentioned there, the proposal in itself is far from new, as it essentially goes back to the so-called sets method 
from Chen (1978). However, the focus in Albers(2011) is on using it to obtain a satisfactory nonparametric 
procedure. In this way the serious underlying estimation issues are solved, which in practice are typically 
conveniently ignored almost completely. 

The lower limit n should be chosen such that during IC for some small α>0 
 
  P(max(X1, ..., Xr) ≤ n) = rα.                                           (2.1) 
 
In this way a fair comparison for varying r can be made, as the average run length (ARL) during IC will have 
the same value r/(rα)=1/α for all r. From (2.1) it follows that 1-(1-p)n = {rα}1/r and thus n = log(1- 
{rα}1/r)/log(1-p). During OoC the alarm rate becomes{1-(1-θp)n}r, and consequently we obtain  

 
ARLr,θ  =  r/{1 – (1-{rα}1/r)log(1-θp)/log(1-p)}r  ≈  r/{1 – (1-{rα}1/r)θ}r.     (2.2) 

 
As p is (very) small, the last step in (2.2) provides a really close approximation (see Albers(2011) for 
details). 
 Using (2.2), the performance of the MAX-chart for various r is studied in Albers(2011). For r=1, the 
simple geometric chart has ARL1,θ ≈ 1/(θα), which decreases rather slowly as θ increases. Unless θ is very 
large, increasing r indeed greatly improves matters, as can e.g. be demonstrated by studying ARL1,θ/ARLr,θ. 
As functions of θ these ratios start at 1, increase to a maximum and then slowly decrease again to 1/r. For 
larger r the peak is higher and it occurs for lower θ. On the other hand, the decline is also faster as r 
increases. A simple rule of thumb is to use min(5,ropt), where ropt=1/{α(2.6θ+2) + 0.01(4θ–3)}. The 
truncation is added here because using too high values of r may feel awkward in practice and moreover 
almost all the improvement over r=1 has already been realized at r=5.  

Finally, let ARL*r,θ correspond to the negative binomial chart, then studying ARLr,θ/ARL*r,θ shows 
how much the  MAX-chart looses w.r.t. to this optimal choice if homogeneity happens to hold after all. As is 
demonstrated in Albers(2011), the excess of these ratios over 1 stays quite limited. Hence it does makes 
sense to use the MAX-chart to provide a robust alternative. This is achieved in the estimation step: let X(1)< ... 
< X(m) be the order statistics of a Phase I sample of size m, then the lower bound n can be replaced by its 
estimated counterpart X(s), where s is the smallest integer ≥ m(rα)1/r. Note that as r increases, this s indeed 
moves away from the extreme value 1, thus allowing estimation with ‘normal’ instead of huge errors. See 
Albers(2011) for further details. 
 
3. The intermittent case 
 In the change point situation the process went OoC once the failure probability jumped from p to θp, 
for some θ>1. Here we will instead consider the case where going OoC means that for stretches of the Di still 
p holds, while for the remainder the failure rate has become κθp, for some suitable κ>1. To get some feeling 
for how this may work out in comparison to the change point case, we model the impact on the waiting times 
as follows: for some γ with 0≤ γ≤1, we have 
 

Pθ,γ(Xi=k) = γp(1-p)k-1 + (1-γ)κθp(1-κθp)k-1.        (3.1) 
 
Hence for simplicity we assume in (3.1) that the Di leading to a certain waiting time are either all based on p, 
or all on κθp. Obviously, this is not meant as an exact description of the underlying reality, but merely as a 
better approximation than, and hence improvement over, the simple geometric model (cf. Box’s remark ‘all 
models are wrong, but some are useful’). 
 To allow a meaningful comparison, we first align the intermittent situation from (3.1) with the 
constant OoC rate θp from the change point case. This implies that we require in addition γ/p+ (1-γ)/(κθp) = 
1/(θp), and thus that γ=(κ-1)/(κθ-1) (or equivalently κ=(1-γ)/(1-γθ)). Note in particular that now γ<1/θ: during 
OoC, the expected waiting time should be reduced by a factor 1/θ, so the fraction γ with the original waiting 
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time indeed needs to be smaller than this 1/θ. On the other hand, observe that γ=0 (i.e. κ=1) reproduces the 
change point case θp(1-θp)k-1. 
 The comparison can subsequently be made by considering the likelihood ratio 
 

Pθ,γ(Xi=k)/P1,0(Xi=k) = γ  + (1-γ)κθ{(1-κθp)/(1-p)}k-1.      (3.2) 
 
This ratio decreases more sharply in k if γ (and thus κ) is larger. More precisely, it crosses the value 1 for k 
such that κθ{(1-κθp)/(1-p)}k-1=1. Hence k-1 then equals –log(κθ)/log{(1-κθp)/(1-p)} ≈ log(κθ)/{(κθ-1)p}, and 
it follows that this k decreases in κ. Consequently, in comparison to the change point case, the intermittent 
situation can be characterized as a so-called tail alternative. The notion of tail alternatives has been used 
before, see e.g. Albers et al.(2001) and the references contained in that paper. A typical application occurs 
when comparing two medical treatments where a possible difference in effect (e.g. expected additional 
survival time)  is not constant over the whole range of outcomes, but instead (more or less) concentrated at 
one end. This can be due to a multitude of causes, such as postoperative mortality. 
 The characterization above will help us to find a suitable chart for intermittent behavior. To show 
this, we proceed as follows. If we have (X1, ..., Xr) at our disposal in the change point situation, a simple 
Neyman-Pearson argument shows that using the sum of these Xi, and thus the negative binomial chart, is 
optimal (cf. (3.2)). Indeed, as mentioned in the Introduction, the MAX-chart then is (fortunately only slightly) 
less efficient and ‘only’ chosen for its superior robustness properties. But let us for a moment reverse matters 
and ask for what type of alternative the MAX-chart would in fact be optimal. The answer is a bit exotic, but 
also  straightforward: suppose 
 
  P(Xi=k) = bp(1-p)k-1 for k≤n and P(Xi=k) = ap(1-p)k-1 for k>n,      (3.3) 
 
where b>1>a (and obviously a and b for given n chosen such that these probabilities do sum to 1). For this 
type of alternative another look at the likelihood ratio readily shows that here it is optimal to reject for large 
values of Y, with Y = #{Xi ≤n, i=1, .., r}. The extreme case Y=r in fact precisely results in using the MAX-
chart with FAR={1-(1-p)n}r, which boils down to rα if in (3.3) we let n = log(1- {rα}1/r)/log(1-p). 
 However, the result obtained covers more than just MAX. In fact, for each j=0, 1,2,...,r-1, giving a 
signal if Y≥r-j produces a chart. Observe that Y is bin(r,c) with c=P(Xi ≤n) and denote P(Y≥i) by B*(r,c,i), 
then the corresponding FAR=B*(r,c,r-j). As before, fair comparison requires the same ARL=1/α to be used in 
all cases.  Obviously, B*(r,c,r-j) increases in j and hence c=cj has to simultaneously decrease, in order to 
keep the level at rα. Since cj=P(Xi ≤nj), it follows that then nj=log(1-cj)/log(1-p) ≈ -log(1-cj)/p decreases in j 
as well. To give an example, if ARL=1000 and r=5, we obtain that B*(5,0.347,5) = B*(5,0.185,4) = 
B*(5,0.083,3) =0.005 and consequently that njp≈-log(1-cj)= 0.426, 0.205 and 0.087 for j=0,1 and 2, 
respectively. Hence each of these charts with FAR=rα is optimal against an alternative of the form (3.3). As j 
increases, the alternative in question more and more takes the form of a tail alternative.  
 The excursion to the alternatives (3.3) thus has shown how the MAX-chart should be adapted to 
become suitable for alternatives with tail character, such as the ones from (3.1): not only signal if all r 
individual waiting times are sufficiently small, but already do so if this holds for r-1, or possibly even for r-
2, such times. To compensate for this more liberal attitude, the criterion for being ‘sufficiently small’ of 
course has to strengthened accordingly. Precisely this latter effect produces the suitability for detecting tail 
behavior. In principle we could use r-j for j all the way up to r-1 (which upper boundary case leads to a MIN-
chart, which is not really a good idea), but numerical evidence, like the example above, suggests that j<r/2 
suffices. Since typically r≤5, this leads to concentrating on j=1 or j=2 as alternatives to j=0 (the MAX-chart). 
 To  implement the charts, we observe that the requirement FAR=B*(r,cj,r-j)=rα through expansion 
w.r.t. cj produces the following 3rd  order approximation 
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where c0j = )/(1)}/({ jrr

jr −α . For j=0, the solution c0=c00=(rα)1/r is exact, while for j>0  the value of cj is 
sufficiently small to make (3.4) quite accurate. For r≤5 and α≤0.01 the error resulting from using c1=c01{1 + 
c01/r + (r+2)c01

2/(2r2)} with c01=α1/(r-1) is at most 2% and from using c2=c02{1 + 2c02/(r-1) + 
(r2+4r+1)c02

2/(r(r-1)2)} with c02=(2α/(r-1))1/(r-2) at most 1%  (for the 2nd order approximation we find 7% and 

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS042) p.4866



 4 

3%, respectively). As nj=log(1-cj)/log(1-p) ≈ -log(1-cj)/p continues to hold for j>0, the approximation for the 
lower bound nj is immediate from (3.4). 
 It remains to analyze the resulting OoC-behavior. In analogy to (2.2) it now follows from (3.1) that 
 
 cθ,γ,j = Pθ,γ(Xi ≤ log(1-cj)/log(1-p)) ≈ γcj + (1-γ){1 – (1-cj)κθ},     (3.5) 
 
with again κ=(1-γ)/(1-γθ). Hence e.g. c1,γ=cj (IC-case) and cθ,0=1 – (1-cj)θ (change point OoC-case). The final 
step is to observe that  then 
 
 ARLθ,γ,j = r/B*(r,cθ,γ,j,r-j),         (3.6) 
 
with cθ,γ,j as in (3.5), cj as in (3.4) and B* again the binomial exceedance probability. In particular, 
ARL1,γ,j=1/α, ARLθ,γ,0=r/{γ(rα)1/r+(1-γ)[1–(1-(rα)1/r)θ]}r (cf. (2.2)).  
 By way of illustration, we collect some representative outcomes in Table 1 below. For r we take the 
illustrative value 5 and for α the small 0.01 and the very small 0.001. In Albers(2010) values of θ up to 4 are 
used; here we have a mixture of 1 and κθ, so  we stop at the smaller value 2 for θ and let κ run as far as 7. 
  
Table 1. Values of ARLθ,γ,j from (3.6) for r=5 and various α, θ and κ=(1-γ)/(1-γθ). The upper, 
middle and lower values in each cell are for j =0, 1 and 2, respectively. 
                      

         θ = 3/2       
  α    \   κ        1   2          3   4    5   6          7           
         214 115 88.0 78.3 74.8 73.9 74.2  
0.001         260 126 81.8 60.8 50.3 44.2 40.4        
                    337 170 106 74.5 57.0 46.2 39.0 
   
         30.3 24.3 24.0 24.8 25.5 26.2 26.7          
0.01         34.2 22.4 18.7 17.3 16.7 16.6 16.6 
                    40.2 25.0 18.9 15.9 14.2 13.1 12.5           
 

           θ =2       
  α    \   κ        1   2          3   4    5   6          7           
         80.9 39.7 31.5 29.5 29.3 29.8 30.4 
0.001         108 43.1 27.0 20.8 17.8 16.3 15.4 
                    161 65.2 37.7 26.1 20.1 16.7 14.5 
   
         15.6 13.3 13.9 14.7 15.3 15.7 16.0          
0.01         17.8 11.5 9.97 9.58 9.53 9.59 9.69 
                    22.5 12.9 9.86 8.57 7.93 7.59 7.39           
  
 Note that Table 1 nicely shows that the actual behavior is as predicted on the basis of our theoretical 
considerations. For κ=1 we are in the change point situation and the MAX-chart (j=0) clearly beats using j=1 
and (certainly) j=2. However, to keep matters in perspective, note that all three charts easily defeat the 
geometric chart (r=1), for which ARL≈1/(θα). As soon as κ start to grow, the choice j=1 tends to become 
better than the MAX-chart. E.g. at α=0.01 intermittent behavior between θ either equal to 1 or to 4 has 
ARL=11.5 for j=1 and ARL=13.3 for j=0. The larger values of κ have been added mainly to show that indeed 
j=2 becomes better than the MAX-chart as well, and that this choice eventually also beats j=1. A qualitative 
conclusion that suggests itself is that in case of intermittent behavior j=1 provides a good alternative to using 
a MAX-chart. If the tail character is quite extreme, j=2 might even be the sensible choice. 
 A final point to consider is the (nonparametric) estimation aspect. As argued in the Introduction, this 
is quite important, as reliance on e.g. homogeneity quite often is rather dubious. Nevertheless, we can be 
extremely brief about this topic here: everything just goes on as in the MAX-case. No longer conclude from 
cj=P(Xi ≤nj) that the lower bound nj=log(1-cj)/log(1-p), but instead use its estimated counterpart X(s), where s 
is the smallest integer ≥ mcj and X(1) <...< X(m) are the order statistics from a Phase I sample of size m.   
 For convenience we summarize the application of the new chart as follows: 
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ABSTRACT 
Health care monitoring typically concerns attribute data with very low failure rates. Efficient control charts then signal 
if the waiting time till r (e.g. r≤5) failures is too small. An interesting alternative is the MAX-chart, which signals if all 
the associated r waiting times for a single failure are sufficiently small. In comparing these choices, the usual change 
point set-up has been used, in which going Out-of-Control (OoC) means that the failure rate suddenly jumps up and 
then stays at this higher level. However, another situation of interest is intermittent OoC behavior. In industrial 
settings, an OoC process can be adjusted to return to In-Control (IC), but with health care monitoring this usually is no 
option and stretches of OoC and IC behavior may alternate. Comparison of such intermittent alternatives to the change 
point situation shows that the former can be characterized as tail alternatives, in the sense that the difference w.r.t. the 
IC-distribution becomes more concentrated in the lower tail. This suggests to generalize the MAX-chart as follows: now 
signal if all but 1 (or 2) out of r individual waiting times are too small. A numerical study shows that this approach 
indeed works well. 
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1. Select a desired in-control ARL=1/α and an average degree of change θ during OoC that 
should be optimally protected against.  

2. As a suitable choice for r, use min(5,ropt), with ropt=1/{α(2.6θ+2) + 0.01(4θ–3)}. 
3. For low, average or strong intermittent behavior use j=0 (=MAX), 1 or 2, respectively. 
4. Compute cj from (3.4) and collect a Phase I sample X1, ..., Xm (take e.g. m=100).   
5. Find the smallest integer s ≥ mcj and the corresponding order statistic X(s). 
6. Now start monitoring: collect the next r waiting times Xm+1, ..., X m+r. 
7. Signal if at least r-j of these Xi are ≤ X(s); otherwise collect the next group of size r. 
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