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1. Background

1.1 Air pollution and health studies

The adverse health effects associated with ambient air pollution can be estimated using ecological
time series studies, which comprise daily data for the population living with an extended urban area.
The response data, y = (y1, . . . , yn)n×1, are daily counts of mortality or morbidity outcomes, which
are realter to air pollution concentrations and m other explanatory variables, Z = (z1, . . . , zn)n×m,
the latter of which can include a smooth function of time and a measure of temperature.

The concentrations of a number of pollutants are measured daily by a network of q monitors
located within the study region. Thus for a given pollutant i, there is an n× q matrix of observations,
Wi = (wi,1, . . . ,wi,n). The observations for day t are denoted by wi,t = (wi,t(s1), . . . , wi,t(sq)), where
(s1, . . . , sq) are the coordinates of the monitoring sites. Most studies only consider the health impact
of a single pollutant, and as the health data relate to the whole region, a representative value for the
entire region is required for each day. This representative value is typically estimated by

X̄i,t =
1
q

q∑
l=1

wi,t(sl),(1)

the average value from the q monitoring sites (see for example Lee and Shaddick (2008)). The health
effects of this simplistic single day estimate are typically estimated from a Poisson generalized linear
model. A general form of this model is

Yt ∼ Poisson(µt) for t = 1, . . . , n,

ln(µt) = zT
t α+ g(X̄i,t−k),(2)

where the regression parameters for the non-pollution covariates are denoted by α. The representative
value of pollution has been lagged by k days and, the shape of the relationship between air pollution
and health is represented by the function g(·). Although the majority of studies use an approach
similar to that described above, it has a number of deficiencies, and in this paper we develop a more
spatially representative measure of air pollution than that given by (1).
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1.2 A spatially representative measure of air pollution

Considering a single pollutant i, the monitor average has a number of deficiencies as a spa-
tially representative measure of air pollution. Firstly, it is likely that some of the locations of the
pollution monitors may have been chosen by preferential sampling, meaning that they are purposely
placed at sites with high pollution concentrations (Loperfido and Guttorp (2008)). It is therefore
likely that equation (1) will overestimate the true average concentration. This overestimation will be
compounded by the fact that a number of the monitors will be located next to main roads, which
will lead to higher concentrations being recorded compared to the non-roadside monitors (where most
people live). The monitor average also does not take into account the population density across the
study region, therefore, (1) may not directly relate to a sizeable proportion of the population.

Instead, for a single pollutant i, we believe that the appropriate exposure measure is the average
level of pollution to which the population were exposed. On day t, this can be approximated by

Xi,t ≈
N∑
j=1

P (s∗j )Xi,t(s∗j ),(3)

where s∗ = (s∗1, . . . s
∗
N ) form a regular grid covering the entire study region, and to preserve scale∑N

j=1 P (s∗j ) = 1.

Finally, the desired pollution measure for a region is inherently an unknown quantity, and hence
the uncertainty in any estimate should be allowed for when estimating its health effects. Therefore,
the aim of this paper is to: (i) produce a spatially representative measure of overall air quality; and
(ii) incorporate it into a health model, taking account of the uncertainty in the model.

2. Methods

We propose a three stage approach for estimating the overall effects of air quality on human
health, which addresses the limitations of the standard approach outlined in the previous section. The
first stage describes the estimation of (3) for a single pollutant, the second combines these spatially
representative values into an overall index of air quality, while the third estimates its effects on health.

2.1 Pollution model (single pollutant)

We propose estimating the approximation of Xi,t, given by equation (3), separately for each
day, using a Bayesian geostatistical model. Inference is implemented using the geoR, (Ribeiro Jr. and
Diggle (2001)), add on package for the statistical programme R, (R Development Core Team (2011)),
which uses direct simulation rather than Markov chain Monte Carlo (MCMC) methods. For day t, we
model the concentrations of a generic pollutant, wt = (wt(s1), . . . , wt(sq)) (the subscript i has been
dropped for notational simplicity) at q monitoring sites, as

ln(wt) ∼ N(Btγ, σ
2V (φ, ν2)),

γ ∼ N(µγ ,Σγ),

f(σ2) ∝ 1/σ2,

φ ∼ Discrete Uniform(a1, . . . , ar),

ν2 ∼ Discrete Uniform(b1, . . . , bf ).(4)
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The data are modeled on the log scale as suggested by Ott (1990). The spatial trend is represented by
Btγ, where Bt is an n×p matrix of covariates, and γ are the associated regression parameters. These
parameters are assigned a weakly informative multivariate Gaussian prior, with a large variance and
a diagonal correlation matrix, i.e. Σγ = σ2

γI.

The covariance structure of the model is represented by σ2V (φ, ν2) = σ2(R(φ) + ν2I), which
combines spatially structured correlation (via R(φ)) with measurement error (via ν2I). The variance
parameter σ2 is given a functional flat prior on the log scale (Diggle and Ribeiro Jr (2007)), i.e.
f(log(σ)) ∝ 1 which is equivalent to f(σ2) ∝ 1/σ2. The spatial correlation matrix is denoted by R(φ),
and is modeled by the Matern class of functions with smoothness parameter κ = 1.5. The parameter
φ represents the range of spatial correlation, and is given a discrete uniform prior for computational
efficiency. Finally, ν2 is the noise to signal ratio, and is also assigned a discrete uniform prior distri-
bution for the same computational reasons as described for φ.

Using direct simulation we can generate J samples Θ(j) = (γ(j), σ2(j)
, φ(j), ν2(j)

) from the pos-
terior distribution of (4). Conditional on each set of samples Θ(j), Bayesian Kriging can be used to
predict the pollution surface at a set of prediction locations, s∗ = (s∗1, . . . s

∗
N ), which form a regular

lattice of points over the study region R. Each set of predictions can then be exponentiated back to
their original scale and weighted by the associated population density, thus producing J samples from
the posterior predictive distribution of (3).

2.2 Air quality indicator

Air pollution is made up of a complex mixture of numerous pollutants, and it is more realistic
to estimate the health effects of a measure of overall air quality, rather than that of a single pollutant.
The Bayesian geostatistical model can be applied separately to each of F pollutants, providing that
each one is measured at enough locations to make a geostatistical analysis feasible. These posterior
predictive distributions can then be combined by constructing an air quality indicator (AQI, see
for example Bruno and Cocchi (2002) and Lee et al. (2011)), which is a synthetic index of overall
air quality. However, each pollutant will have a different level of temporal variation, so must be
transformed onto a common scale. Therefore, we apply a simple linear re-scaling to the J estimates
of (3) for each pollutant, so that each one has mean zero and standard deviation one. From these
standardized values the posterior distribution of the AQI can be constructed as

AQI(j)t =
1
F

F∑
i=1

X
(j)
i,t − µi
σi

for j = 1, . . . , J,(5)

where µi and σi are the pollutant specific mean and standard deviations used in the re-scaling. Thus,
the above equation produces J samples from the posterior predictive distribution of the air quality
indicator, conditional on each set of observed pollution data (w1,t, . . . ,wF,t).

2.3 Health model

The health model we propose differs from (2), because it allows for the uncertainty in the
posterior predictive distribution of the AQI given by (5). This can be implemented by utilizing a
Bayesian approach, where the air pollution concentration is randomly generated from its posterior
predictive distribution at each MCMC iteration. The model we propose is given by
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Yt ∼ Poisson(µt) for t = 1, . . . , n,

ln(µt) = zTt α+ AQItβ,

αj ∼ N(0, 10) for j = 1, . . . ,m,

β ∼ N(0, 10),

AQIt ∼ f(AQIt|w1,t, . . . ,wF,t).(6)

The regression parameters (α1, . . . , αm, β) are assigned diffuse Gaussian priors, with mean zero
and a large variance of 10. Inference for this part of the model is based on MCMC simulation, where
the parameters are updated in three steps, namely: α = (α1, . . . , αm), β and {AQIt}nt=1. The vector α
is updated in blocks via a Metropolis step, using a random walk proposal distribution with a diagonal
variance matrix. The coefficient β is updated singularly, but also by a Metropolis step. The overall
pollution concentrations, {AQIt}nt=1, are generated by randomly sampling from its posterior predictive
distribution given the observed pollution data.

3. London application

3.1 Data

The data relate to the area of Greater London (roughly the area within the orbital M25 mo-
torway), and comprise daily measurements of air pollution, population health, for the over 65s, and
meteorology for the 3 year period spanning 2001 to 2003.

The pollution data comprise daily measurements of carbon monoxide (CO), nitrogen dioxide
(NO2), ozone (O3) and particulate matter (PM10). In addition, we also have a number of potential
covariates for the geostatistical model including, the local environment in which the monitor is located,
the locations of the pollution monitors and, a modeled estimate of the yearly average concentrations of
CO, NO2 and PM10, on a 1 kilometer square grid across Greater London (similar data for O3 were not
available). Finally, we have the population density associated with each of these 1km locations. The
health data comprise the daily counts of the total numbers of respiratory related deaths, in Greater
London. Aggregate daily temperature levels were also obtained.

3.2 Model building

We specified the spatial trend for the pollution model to include an indicator term, for whether
the monitor had been placed at a roadside or background locale, and the modeled pollution estimates
which were closest to each monitoring site. We predicted concentration levels for each of our single
pollutants at every 2km location and specified that all of these locations would be at non-roadside
environments.

In addition to a measure of pollution the covariates in the health model also included the average
daily temperature and a smooth function of time. We specified a quadratic relationship between
temperature and respiratory related deaths as there were some very hot days in Greater London. The
inclusion of the quadratic rather than linear term also produced a smaller AIC value. We represented
the prominent seasonal pattern in the residuals by a natural cubic spline of time (day of the study).
Our choice of 7 knots per year, 21 in total, was made by minimizing AIC. The pollution concentration
estimates were also lagged by one day.
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3.3 Results

We fitted both a standard generalized linear model, given by equation (2), which included the
monitor average as the measure of pollution, and the Bayesian health model given by (6), which was
updated at each iteration with one of the posterior predictive AQI estimates. We compared the rel-
ative risk for a one standard deviation increase in the pollutant and associated 95% confidence and
credible intervals for both models. Under the Bayesian model the credible intervals are wider as the
uncertainty in the pollution concentrations has been accounted for. In the case of CO this wider
interval has meant that the relative risk for a one standard deviation increase in CO is no longer
significant. The widest interval occurs for the AQI as the uncertainty in the four pollutants has been
cumulated into the one measure.

Table 1. The relative risk (RR) and associated 95% confidence and credible intervals for

both the monitor average and our proposed spatial average.

Monitor Average Spatial Average
Pollutant RR 95% CI Pollutant RR 95% CI
CO 1.013 (1.000,1.027) CO 1.009 (0.995,1.025)
NO2 1.012 (0.999,1.026) NO2 1.011 (0.996,1.027)
O3 1.018 (1.000,1.037) O3 1.023 (1.004,1.043)
PM10 1.009 (0.995,1.023) PM10 1.014 (0.999,1.034)
AQI 1.020 (1.005,1.034) AQI 1.022 (1.006,1.043)

4. Future Work

In the future we hope to extend the Bayesian geostatistical model to a multivariate model. This
would allow us to predict pollution concentrations based on the current observations of many other
pollutants as opposed to only those of the pollutant we are trying to predict.
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